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Noise stabilization of self-organized memories
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We investigate a nonlinear dynamical system which “remembers” preselected values of a system param-
eter. The deterministic version of the system can encode many parameter values during a transient period, but
in the limit of long times, almost all of them are forgotten. Here we show that a certain type of stochastic noise
can stabilize multiple memories, enabling many parameter values to be encoded permanently. We present
analytic results that provide insight both into the memory formation and into the noise-induced memory
stabilization. The relevance of our results to experiments on the charge-density wave materialis\bSe
discussed[S1063-651X99)06305-9

PACS numbgs): 05.65+b, 05.45-a, 72.15.Nj

[. INTRODUCTION serted but not justified in Ref1].
The paper is organized as follows. Section Il briefly re-
This paper concerns a nonlinear dynamical system wittviews the deterministic version of the model. Sections Il
many degrees of freedom which organizes to store memand IV present our numerical work demonstrating that noise
ries, in that a configuration-dependent quantity is driven tocan stabilize multiple memories. Section V presents our ana-
take on preselected values. In Rif] it is shown that in the Iytic work which enables us to understand why noise can
absence of noise, the system encodes many memories durikgep memories from being forgotten and also presents an
a transient period, but in the limit of long times retains noaveraging procedure which allows us to obtain analytic in-
more than two of them. Thus, the purely deterministic sys-Sight into the transient memories present in the map without
tem “learns,” and then it “forgets.” noise in a certain limit. Section VI discusses our main results
We examine the effects of adding noise to this system an@nd possible relevance to CDW experiments. Appendix A
demonstrate that certain types of noise can stabilize multipldemonstrates the uniqueness of the limit obtained by the av-
memories so that they are remembered permanently. Thiraging procedure of Sec. V and also discusses explicitly this
noise stabilization is possible because the memory formatiotimit for the case of multiple memories. Appendix B com-
mechanism is fundamentally local, whereas forgetting igoares the time evolution of the full nonlinear system with the
governed by the large-scale behavior of the system. Thus, {tme evolution of a linearized model and shows that the lin-
is possible for certain types of stochastic noise to modify theearized equations reproduce accurately aspects of the evolu-
behavior at long wavelengths without destroying the locattion on large scalegthough not the memory formation it-
nonlinear dynamics which give rise to memory creation. ~ self).
We argue that the type of noise that we have found to
stabilize multiple memories is likely to be present in some II. THE MODEL
experiments on charge-density wa¥€DW) conductors ) _ ) o
such as NbSg Thus, our results could explain the experi-  First we present the model with no noise, which is the
mental observation of multiple apparently permanent memosystem of coupled maps studied in Rff]:
ries encoded in individual samples reported in R&f.
Our analytic investigations of the behavior of this system _ —y. floor ) — v (1) —
both with and without noise show that insight into the X(t+D)=xt)+P ki%]) O =X (O]~ AM).
mechanisms underlying memory formation as well as noise (h)
stabilization can be obtained by averaging the dynamical
equations over intermediate-time periods. We determine anddere,i,j are the site indices, the sum is over nearest neigh-
lytically the dependence of the memory values on the nois&ors, t is a discrete time index, an®"°°[z] is the largest
parameters in the limit when a certain paramdtéends to  integer less than or equal 0 This system of maps can be
zero. The large-scale behavior of the system follows closelglerived from continuous-time differential equations describ-
that of a linear diffusion equation; we present analyticing the purely dissipative evolution of the positionsof N
bounds on the differences between the evolution of the norparticles in a deep periodic potential, with nearest neighbor
linear equations and that of the linearized system that arparticles connected by springs of spring constestl (see
uniform in time and logarithmic in the system size. Some ofinset, Fig. 1, in the presence of force impulsé¢s- A(t)
the analytic results for the system without noise were as-+3][2-4]. These equations describe the dynamics of sliding
charge-density wavd®,5,7], and are closely related to mod-
els of a variety of dynamical systemi8]. In this paper we
*Present address: Physics Dept., MIT, Cambridge, MA 02139. will consider explicitly only one-dimensional systems Idf
"Present address: Math Dept., University of Chicago, 1100 E. 58tidegrees of freedom with one free and one fixed eqdt)
St., Chicago, IL 60637. =0 andxy1(t) =xy(t), starting from the initial condition
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L0 tion of the balls are found near the tops of their potential
- wells [6]. The system “memorizes” the force values and
; — o . adjusts itself so that the balls are at the well tops just as the
........ o) ] pulses end.
E—) _ As seen in Ref[1] and here in Fig. 1, if a repeating
- o ] sequence of pulses of different lengths is applied, then for a
- O | while all the values are encoded. However, at long times the
system eventually reaches a fixed point where it stops evolv-
N=: g . . .
A=[0.1,0.3,0.5,0.7,0.9] ing. At the fixed point, the curvatures are all the same; only
k=0.001 7 one memory is remembered. We have found that using peri-
1o noise I odic, free, and fixed boundary conditions for tkis, chang-
5'0 : o0 ing the initial conditions, and incorporating quenchéche-
k*t independentrandomness to the model do not increase the
number of memories retained at the fixed point beyond 2.
FIG. 1. Plot of curvatures;(t)=k[x;. 1(t) —2x;(t) +x;_1(t)] Here we investigate how this system can be modified so

versus scaled time variable«t for Egs. (1) with no noise and  that it can remember more memories permanently. We show
boundary conditions(t) =0, xy+1(t)=xn(t), starting from the  that certain types of stochastic noise which are likely to be
initial condition x;(t=0)=0 for j=1,... N. System parameters nresent in some CDW experiments can do this and study
are given on the plot. The horizontal regions in the graphs OCCURth numerically and analytically the reasons for the
when the fractional part of one of the curvature values equals th?nultiple-memory stabilization. We show that the stabiliza-
fractional part of one of the values 8f Notice that while the balls tion of many memories arises because the noise contains a
spend some time on each of the memory values, all the cunVatuige e rministic component which causes the curvature vari-
values eventually end up at the single memory value 0.9. Inseté\bles to sustain a large-scale spatial variation even in the
s_ketch of balls and springs in periodic potential, a physical realizaiimit of infinite time. The purely stochastic elements of the
tion of Egs. (D). noise act to destabilize the memories; we will see that these
. destabilizing effects vanish in the limit—0.

The following two sections present our numerical inves-

tigations of the model with noise.

X;(t=0)=0. However, it is straightforward to generalize a
most all the results to a variety of different boundary condi-
tions and to more dimensions.

The memory formation that occurs as these maps evolve
is manifest in the discrete curvature variab&6] IIl. TECHNIQUE: ADDING NOISE

Noise terms can be added to Ed) in a variety of ways.
cj(t)=ki%) [Xi() =x;(0)]. (@ Noise which is uncorrelated in both space and time, or un-
correlated in time but spatially uniforite.g., fluctuations in
It will be useful to write the dynamical equations in terms of the pulse amplitudg@sioes not lead to memory stabilization.
the curvature variables(t) rather than the particle positions However, we have identified a type of noise which is physi-

X;(t). The equations of motion for thels are cally plausible that stabilizes multiple memories.
B floo The memory-stabilizing noise we study here is defined by
Cj(t+1) —¢;() =k{®™°Tcj . 1(t) —A(D)] modifying Eq. (1) as follows. Everyr time steps, an index
_Zq)ﬂoor[cj(t)_A(t)] jp with 1<jp=<N is selected, and for ail>|j, the posi-

tions of ballsjp throughN are shifted by a fixed integet
+@™Te; 4 (H-ADL, 3 [8],

the fixed chain boundary conditions 4] X (1) + D16 ()~ AD)]+X  if =]
] i =lIp

Co(t)=A(t), 4 X(t+1) X;(t)+®™°Tc;(t) —A(t)] otherwise.
()
Cn+1(t)=cn(t), 5
and the initial conditions are The relaﬁve positions of all the balls are unchange_d except
for the distance betwequ andij_l, so the disruption is
ci(t=0)=0, i+0. (6)  local.

: . . Equivalently, one can write the map with noise in terms
Figure 1 shows for these initial conditions the curvaturess ine curvature variables. as

variablesc;(t) versus timet for a five-particle chain when
A(t) is cycled sequentially through five different values.

Memory encoding is manifest by the tendenciescf to cj(t+1)—c;(t) =k{®"Tcj4 1 () ~A(D)]
take on values wher®™¢(c)=0"(A(t)), where®™(z) —2@pMooT e (1) —

— floor, : [Cj(t) A(t)]
=z—®""(z). That the curvature variables take on values

whose fractional part is equal to the fractional part of the +<Df'°°’[cj_1(t)—A(t)]}

force impulse in the maps implies that for the balls and
springs, just at the end of each force pulse a significant frac- +kX8i(modr) o0 0},j5-17 8. j)s (8)
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where the Kronecker deltd ; is unity if i andj are identical ~present, more memories are stable at long times than for the
and zero otherwise. In either formulation, the noise does natoiseless case, Fig. 1. The noise also exhibits a destabilizing
affect the boundary conditions. effect, as evidenced by the fluctuations in the curvature val-

This type of noise models the physical process of breakues. As comparison between FigaRand Fig. Zb) demon-
ing the spring connecting bally, andjp—1 and then sub-  Strates, these fluctuations become smaller as the parakneter
sequently reconnecting them with a spring of longer unds decreased. Numerically we find that at timgslong
stretched lengtfi12]. This choice of noise is motivated by €nough that the behavior appears to be stationary, the stan-
phase slip processes known to occur in CDW matefi3$ dard detv?;uon of the cu2rvla/\;gres from.the|r memory values
When the model is applied to CDW's, the varialiein Eq.  {(1M)2Z; ,,[¢;(t)—m;]7}"*is proportional tok ask—0.
(7) is interpreted as the phase of the charge-density wave at Changing the paramete¥sand = can change the number
the jth impurity site in the sample, measured relative to anof different stable memories and their values. Below we will
undistorted configuratiofil4—14. If a phase slip causes an show that the memory values attained by each particle in the
extra wavelength of the CDW to be inserted between twasystem can be calculated analytically by averaging the equa-
impurities, then the “unstretched” phase difference betweertions of motion of the system.
two impurity sites increases.

Deterministic noise

In the numerical simulations shown in Fig. 2, the inggx
was chosen randomly and with equal probability from the

Figure 2a) shows the behavior of a system identical toindices 1. .. N. It is useful to consider a “deterministic”
that of Fig. 1, except that noise has been applied. (7)],  version of noise, where rather than selectiggandomly,j
using the parameter values=9 and r=13. Figure 2Zb) is cycled systematically through the indices N-so that
shows the time evolution in the presence of noise for aach index is selected exactly once during each noise cycle.
smaller value ok. Otherwise the parameters in Figaand  (We refer to a “noise cycle” as thhl 7 steps it takes to make
Fig. 2b) are identical; in both cases, the indgxin Eq.(7) a complete cycle through the indices M5 One such
was selected randomly and with equal probability from thechoice, used for our numerics, is to cycle through the indices
indices 1. .. ,N. Figure 2 demonstrates that when noise isin order, so that

IV. NUMERICAL RESULTS
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FIG. 3. Time evolution of the curvatures in a system of five
particles N=5) in the presence of deterministic “noise.” Except
for order of the sequence of noise kicks, the system is identical t
that in Fig. 2a). The curves from top to bottom are
cq(1), ... ,cs(t). Note the similarity in the large-scale features of
these curves, where deterministic noise has been applied, with tho
with random noise, shown in Fig. 2.

FIG. 4. Plot of two curvatures in the system of Fig. 3 versus
time on an expanded scale. Parameter valueka@.001,N=5,
%\=[0.1,0.3,0.5,0.7,0]9 X=9, 7=13, with deterministic noise.
The plots showc; andc, versus time after the long-term behavior
Qas been reached. The behavior is periodic; the period is 65 time
S'taeps, the length of one noise cycle fé=5 andr=13.

discuss the map with deterministic noise. The observation
X (t+1) = x () =DM ¢ (1) — A(t)] that aj long time; a periodic orbit is always rea;hed can be
J ! ' exploited to predict the dependence of the long-time memory
values on the noise parametésnd . A key ingredient in
+X5t(modf),00+(j _ E(modN)Jrl , this analysi; is the examination of the time-averaged equa-
T tions of motion of the system.
In Sec. V B we address the model without noise. Because
(99  in this case most of the memories are transient and therefore
are no longer present when the fixed point is reached, a
whered, (y)=1 if y=0, and zero otherwise. The behavior modified averaging procedure must be used. This procedure
is substantially identical for any sequence in which each inyields insight into the transient memories and enables us to
dex is chosen exactly once per noise cycle. demonstrate that a well-defindd—0 limit of this model
Our numerical investigations of the evolution of E¢®)  exists.
over a wide range of parameters and initial conditions indi-
cate that eventually the system always reaches a periodi~ 5
orbit. The period of the observed cycle is either equal to or ¢
divisor of N7M, where agairN is the number of ballsr is 20 = 7]
the interval between noise pulses or kicks, & the num- |
ber of memories. Figure 3 is a plot of the time evolution of !
thec;(t) for a five-ball systemN =5) with the same param- g 10 |- -
eter values as Fig. 2, but with deterministic kicks. The gros:g I
features of the curves are very similar, but the fluctuations ir5 ]
the curvature values observed for stochastic noise have be® , L ]

s |- o (t)

05 | Cz(t_>°°)

replaced by a regular, repeating pattéfig. 4 shows an N=3 ;
expanded view of this pattern for two of thg's). The ex- OS5 T AS[3.1,02,13] C3(t=>es)
cursions during the cycles have amplitude proportiond. to o , , , [ %
These regular cycles facilitate analytic investigation of the 0 1 2 3
dependence of stable memories and their values on the p.. Xh

rametersX and . The number of memories remembered at
long times wherk is small depends systematically on the
ratio x_/T and not onX and 7 separately. Figure 5 ShOV\(S N=3 and deterministic noise. For these computatikrg).0003,
numerical results for the dependence of the Iong-tlmeout the results are insensitive kovhenk is small. The solid lines
memory values oX/7 and demonstrates the good agreementye the analytical prediction for these curvature values using Egs.
with the analytic predictions presented in the next section. (21) and(17). The number and value of the stable memory values
for given X/7 can be read from the graph, keeping in mind that
V. THEORETICAL ANALYSIS curvature values which differ by an integer are on the same

) ] . memory. For example, forX/7=3, ¢;~1.3,c,~0.3, and c;
In this section we show how various aspects of the behav~ —0.7, so there is one stable memory for these parameter values.

ior of the maps both with and without noise can be under-Other choices oK/~ (such asX/r=1.1) yield more stable memo-
stood analytically in the limit thak—0. In Sec. VA we ries.

FIG. 5. Numerical results for the curvature values observed at
long times as a function of the paramedéetr for a system with
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A. Long-time behavior of the map with noise Averaging Eq.(10) over a timeT . Yyields

As Fig. 5 makes evident, there is domain structure to the
dependence of the value and number of stable memories on j
X/t for the map with noise, Eq47). Here we calculate = X
analytically the structure of these domains wHes1 by fve[xi(tOJrTa‘/Q_Xi(tO)]_ui(tO)Jrzl Pnr. (12
finding the memory value of each site as a function of the
system parametex/r.

The equation of motion for the system is Whent, is large enough so that (to+ Ta,d =;(to) for all

X;(t+1) —x;(t) = D™ c;(t) - A(t)] j, Eq. (12) implies that theu;(to) are independent ofj
o (hence we drop the argumérand must satisfy
+X0+(J _JD(t))‘St(mod 7),01 (10)

whered , (y) is defined after Eq9). Thejp's are selected so j
that the probability thai(t) =n is P,,. We examine first the X S p 13
case of deterministic noise and discuss stochastic noise at the T A=
end of the subsection.
We define an averaging time,,—=NMr and

to+ Taye—1 One can also derive E@13) directly in terms of the cur-
Uj(to): 2 q)floor[cj(t)_A(t)]. (12) vaFure variables;(t) =.k[x]-.+1(t)—2x]-(t).+xj,1(t)]. Aver-
Tave =t aging Eqs(8) over a time intervall . yields
_ — — X
Uj+1(to)—2uj(to)+Uj—1(to)+(Pj+1_Pj);, J#N (14)

1
fve[cj(to_"-rave) —Cj(to)]=

_ — — X .
uj+1(t0)_2uj(t0)+ujfl(to)_PN;: J=N (15

If (UTadlcj(to+MNT)—Cj(tg)]=0, as is true for a peri- Perhaps surprisingly, which ball is on which memory does

odic orbit, one has not depend on the memory valu€d™@(A,,). This analytic
o prediction is completely consistent with our numerical obser-
Un— Uyn—1=—PpX/T, vations; this agreement is illustrated by the consistency of
(16)  the analytic and numerical results presented in Fig. 5.
Uy~ U+ P XIT=U,—U;_+PX/T  (1<j<N). We derive Eq.(17) by writing c;(t) =C;+ dc;(t), where

each(; is an integer independent of and 5c;(t) obeys 0

Equation(16) implies thatUj—Uj,lJerX/q- is independent <5cj(_t)§1 for all t. This decomposmon_ can always_ be
of j, which together with the boundary conditions againdone ifk is small enough because the maximum excursion of
' eachc; during the averaging interval is proportionalkcand

i U=— j
yields Yj .().(/T)Enzlpn' everyc; will turn out to be on a memory and hence not at an
For simplicity, assume that none of thg, are exactly an integer. We definedA =A_—d"(A Y and
integer [17] and label the values ofA, such that O

<OMYA)<O™(A)<. .. <OT(A,)<1. We now _q totTawt

show that wherk—0, every particle is almost always on a  dujn=r- > {0 sci(t) - SA() 1} A A, s
memory. Only for a set oP, of measure zero are some T t=h

particles in the system not on memory valueskas0. At

long times, thejth curvature is on the’f'th memory(cj(t  and rewrite Eq(13 as

—) obeys 0™qc; (t—>oo)] ®"a‘{A/*]+O(k)) where

i X 1
the memory index’; ~Z23 p=C—— S ofoa )+ 2 Sur.
y T M &= !

(18

X 19
/J* :1+(I)floor[ ; 2 + 2 q)floor[Am] (19
— =1 _ _
" Now 8ujp=—1 if c;(t)<oA, and su,=0 if &c;(t)
] X J M ; > 6A,, for all t during the averaging interval. Since the ex-
—M@T - — nZl Pat mE_l OTOTAL]|. cursions during this interval are proportionalkothey van-

ish ask—0; thus wherk is small enough th¢th ball cannot
17) cross more than one memory value during a cycle. There-
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fore, we can writeimzléijm:—lnLQjerj, whereQj is
an integer satisfying €Q;<m—1, and thep; satisfy 0
<pj<1. Thus we have

j M
1 1
ngl Pot o mzl QI Ay) +1=Cj+ 37 (Qj+p)),
(20)

with C; and Q; integers. _
For simplicity we assume here thetX/7=)_, P, is not

an integer for anyy <N, a condition which will ensure that

p;<1, and hence (M)(Q,+p;)<1 [18]. Taking thed "
of both sides of Eq(20) yields

Cj= Do +1. (21

X 1M
— + — floor
T n§=:l Pn M m§=:1q) (Am)

Multiplying Eq. (20) by M and then taking thé " of both
sides yields

X J M
Qj :q)floor{ —-MZ= E Pn + 2 (bfloor[Am]
T n=1 m=1
X J 1 Y
_ Mq)ﬂoor _ 2 Pn+ M (I)ﬂoor[Am]},
T n=1 m=1
(22)
which in turn implies
X X J
pj:_M_E pn_q)floor _M_Z P,|. (23)
T =1 T n=1

We see that it is consistent to assume thatg)<1 so long
as MX/7)=l_,P, is not exactly an integer. Singg, can

only be fractional ifc; crosses a memory during the averag-

ing interval, ak— 0 eachc; must be on a memory. Sin€g,
determines the memory index VI$=Q]-+1, one obtains

Eq. (17).

Finally, to demonstrate consistency of the assumption tha
no particle can be on more than one memory, we must sho
that the particle excursions over the averaging time are smal
ask—0. This is easily done starting from the equation of
motion for the curvatures E¢8) and noting that our solution

for the u; satisfiesu;,;—2u;+u;_;=0. If no memory is
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noise causes each spring in the chain to break with equal
probability, multiple memories can be stabilized indefinitely.
However, in our analytic work we did not assume this spe-
cial form for P,, and one may ask whether the same results
are obtained if, for instance, only the first spring were broken
repeatedly.

We address this issue by examining ELy7). Note that if
P,=0 for somel, then particled —1 andl must be on the
same memory value. Thus, if only the first spring is repeat-
edly broken, there will be only one memory observed at long
times, although its value may be different than in the noise-
less case. However, th&, need not all be equal for multiple
memories to be stable at long times.

2. Stochastic versus deterministic noise

Now we discuss the behavior when the system is subject
to stochastic noise rather than deterministic noise. The cru-
cial point here is that the equations of motion can always be
averaged over some time interv@),., and so long as all the
c;'s stay roughly constant, there is no need for there to be a
truly periodic cycle for the procedure above to apply. lAs
—0 the memory values will be exactly the same for random
noise as for deterministic kicks with the same time-averaged
spatial distribution of events.

Not surprisingly, the excursions of the curvatures about
the memory values are larger for stochastic noise than for
sequential kicks, all other parameters being held fixed. There
are two mechanisms by which stochastic noise would en-
hance the size of the excursions. The first is that the small
motions of the curvatures about their memory values are
more erratic because the noise kicks are inhomogeneously
spaced in time, and the second is that fluctuations in the
noise may temporarily cause the system to be driven to a
memory value other than that determined by the time-
averagedX/r. Numerically we find that the excursions in
systems with stochastic noise are typically a few times the
excursions observed in the deterministic case with the same
parameters, and that their magnitude is proportionak.to
These observations are evidence that the first mechanism is
ominant; the second mechanism leads to a nonlinear depen-
ence of the excursions dnand also, since it depends on
ow far each curvature is from the edge of the parameter
range in which the memory in question is stable, leads to
sensitive dependence of the excursion magnitudeX and
r

crossed, then the absolute value of the difference between the

time average (mave)E:g”avetDﬂO"’[cj(t) —A(t)16a).a, and
the corresponding®™*°Tc;(t) — A(t)]a).a,, cannot be big-

ger than unity. This bound implies that until a memory is

crossed, the excursion per unit time of each ofdlsecannot

be bigger thark(4+ X). Since the memory values are sepa-

rated by an amount of order unity, &s~0 the number of

steps needed to reach the nearest memory divergekas 1
and the excursion during the averaging time cannot b('ﬁ

greater thark(4+ X) T ave-

1. Importance of spatial distribution of the noise

B. The behavior of the map without noise ak—0

In this subsection we show that a modified averaging pro-
cedure can be used to obtain insight into the time evolution
of the system.

Above, we used the observation that at long times the
behavior of the map with noise is periodic in time to calcu-
late how the memory values depend on the system param-
ters. A key step in this calculation is averaging the equa-
ons of motion of the system over an appropriate time
interval. Here we present an averaging procedure applicable
in the limit k— 0 that can be used to obtain insight into the
time evolution and not just the long-time behavior.

So far we have mainly discussed the case of spatially Analyzing just the long-time behavior cannot yield insight

homogeneous nois®,=1/N for all n, and seen that if the

into transient memories, because in this limit almost all the



4976 M. L. POVINELLI et al. PRE 59

072

™o ¢;, 1(t)] and P™c;_4(t)] remain constant, and we
can denote theifintege) values ad;, ; andl;_, and define
n=(lj+1+1j-1)/2. Equation(24) then becomes

b ci(t+1)—c (1) =2k{7—d"°Tc,()]}. (25

051 T T T T
If »—®"°Tc;(t)]>0, thenc;(t) will increase in time until
n—®"°Tc;(t)] is no longer positive. If is an integer, then
c;(t) will stick at », whereas ify is a half integer, theo;(t)

0.32 - T - T g will undergo a period-2 cycle about the integer valyge
s L e +1/2. If initially »—®"°Tc;(t)]<0, then eventually;(t)
_,_,—z—'—’_'_r will stick just below n+1 if % is an integer, ana;(t) will
030 = 7 oscillate in a period-2 cycle cycle abogt- 1/2 if 5 is a half
029 ! ! integer.
8600 8650 t 8100 8730 If there areL stuck sites in a row, then the cycles of the

_ sites become longer, but simple periodic behavior is still ob-

FIG. 6. Plot O_f curvatures versus time on an _eXpanded scalgerved. We find numerically that the motion of each site in a
during the evolution of the noiseless system of Fig. 1. Pgrametegtuck region withL sites is a cycle of length + 1 or shorter.
values arek=0.001,N=5, A=[0.1,0.3,0.5,0.7,00 The particles  noreover, every time a site changes its stdfosinstance, a
can be divided into two types—those whose curvatures Osc'llat%lrifting site might come withinO(k) of a memory valug
periodically in time about memory valugéor one casecs, the 0 nay cycle gets established in a time that remains finite as
curvature on the memory is actu.ally tlmg independent umtits k— 0. Therefore, ak—0, during the periods when the drift-
a memory at~8660), and those in transit between memory values.ing sites at the ijoundar’ies of the region in question remain

. . between memories, we can average Eg4) over the cycle
memories have been forgotten. Therefore, the technique We lengthp Deﬁningu:(llp)zto+p @17 ¢ (1)], we ob-
: j i\

used in the preceding subsection of looking only at fixed t=tg+1
points of the equations of motion is not so useful here. How{ain
ever, Fig. 6, which shows the evolution of the curvatures for
J Gi(t+p)—c()=kK(Uj 1 —2uj+u;_1).  (26)

the system with no noisghe same numerical data as Fig. 1

on an expanded S(_:alajemc')nstra'tes that during the motion All the terms on the right hand side of E(R6) are time

two types of particles exist—sites whose curvatures a”?ndependent implying that

“stuck” on a memory value, and curvatures that are in tran- '

sit between different memory value$'drifting” ). A ¢i(to+p)=c;(to) + (kp)r;, (27)

“stuck” site oscillates periodically about a memory value

until a neighbor changes its status, at which time the stuclwith r;=u;,;—2u;+u;_;. Moreover, we can rewrite Eq.

site can either change its oscillation about the same memory24) during the averaging interval as

or can start to drift. Ak is decreased, it takes more and more

time steps for the drifting sites to get between different Cj(t+1)=c;(t) +krj+kA;(t), (28

memories, during which time they provide a constant envi-

ronment for their neighbors. In contrast, the period of thewhere A;(t)=®"°Tc;, 1(t)]—uj.1—2{®"Tc;(t)]—u}

cycles of the “stuck” sites remains unchanged las:0:  +®"°[c;_1(t)]-u;_; has zero mean and is periodic with

moreover, the amplitudes of the excursions about thé@eriod p. Also, becauseb™(c;) of a stuck site does not

memory values are proportional ko In the limit k—0, the ~ change by more tham 1, we havgA(t)|<4. Therefore, we

drifting sites comprise a quasistationary environment for theéan write the complete solution of E(R4) for the interval

stuck sites, and one can average the equations of motion ov@l}here all the stuck sites have settled into their periodic be-

the period of the stuck sites’ cycles. havior and none of the drifting sites goes through an integer
For simplicity, in this subsection we consider only the &S

case of a single memory witA=0. The generalization of

the analysis %o differeni/ memory valuegs and to multiple ¢j(to+ D =c;(to) + (kDrj+kaw;(l), (29

memories is straightforward, and is discussed briefly in Ap-

. . ; here #7;(l) is periodic in time and satisfieg»;(l)]
pendix A. We only discuss here the model in the absence o, maxp,}<4N for all j andl. The first two terms represent

23:2:’isl:)trg;n?n;l)é?;rg’deasny extended to the case Wh%ﬂe piecewise linear solution and the last term represents the
S - cycles of amplitude of ordek superimposed on the piece-
The equations of motion for the(t) are wise linear solution. Note that the difference between the
¢;(t+1)=c;(t) + k{®™Tc;, 1(1)] piecewise linear part of the solution and the complete solu-
tion goes to zero ak—0.

We can define a rescaled time variable kxt and take
the limit of Eq. (29) with k—0, kI finite, in which theu;

First consider the behavior of a sifevhose two neigh- (and hencer;) are independent ok. The existence and
bors’ curvatures are both drifting between integers. Whileuniqueness of this limit is demonstrated in Appendix A. In
the sites j+1 and j—1 are drifting, the quantities this limit, the solution converges to

20"y (0)]+ ",y (D). (24
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c; (To+T)=c(To) +1:1. (30) how to generali;e the analy_sis of the->0 limit to apply to
the case of multiple memories.
If a site | is drifting, we setu;=®"%(c;), whereas if it is
stuck, u; is determined by requiring V1. DISCUSSION
rj=ujy1—2U;+U;_1=0. (3D We have investigated the behavior of a simple nonlinear
) ) . dynamical system which has the capacity to encode memo-
When there arel stuck sites in a row(say sites rigs The deterministic system can encode many memories
Ujg+1s - - Ujg+L, With uj andu; . .1 given), then theu;  for a while, but at long times forgets almost all of them. Here
in the stuck region are obtained by solving E8fD), yielding  we have demonstrated that there is a type of stochastic noise
which enables the system to encode many memories perma-
Up+L+1— U} nently. The memory stabilization arises because the noise
—1 71 Uo- (32)  has a time average with nontrivial spatial structure; in par-
ticular, it enables the curvature variables which describe the

Whenever all thei;'s are fractional, every site in the region local force, to have large-scale variations even at long times.
; The disappearance of the memories in the absence of
must be on a memory. The valuesugf . ; andu; , enter PP

. . noise occurs only because the range’sfcollapses at long
into the drift rates Ofcio and CigtL+1 and hence must be times. For fixed, free, or periodic boundary conditions

determined to obtain the time evolution of those sites. (which seem most appropriate to physical realizations of

One still needs to consider the behavior at the transitiongg|is and springs or of charge-density wayes long times
when the sites change between stuck and drifting. Becausge values ofc, and cy are the same. To stabilize many
the number of steps needed to establish the new cycle strugyemories permanently, one must arrange things sodfiat
ture is finite and independent &f these transitions are in- +cy at long times. The “phase slip” noise studied here is
stantaneous in terms of rescaled time. Moreover, as we dengye way to do this. In principle, another way to do this is to
onstrate in Appendix A, the values of thés after each impose boundary conditions which enforeg# ¢y, but we
transition do not depend on the details of either the old cyclgq not know of a physically plausible way to do this in the
structure or of the transition. CDW system[19].

These cpnsiderations enable us to use the the piecewise \ye now discuss possible consequences of our results for
linear solution Eq.(30) to formulate ak=0 model. In the  experiments on CDW materials. The experiments reported in
k=0 model, if a sitel is stuck, thert; is exactly an integer. Ref. [1] involved averaging over millions of applied pulses,
Between transitions, and thus were probably measuring the number of memories

retained in steady statgl]. In the experiment, the only

B (33) samples which retained multiple memories had additional

dt silver paint strips attached between the probe contacts. This
perturbation on the system is important, because ordinarily
where theu; are equal to the; that are defined for a system one expects the phase slips to occur almost exclusively at the
with nonzerok by averaging between the same two transi-sample contacts, where the strains are largegt The silver
tions. At each transition, the, are continuous. However, the paint in the middle of the sample may induce spatially inho-
u; change instantaneously to the new values appropriate tmogeneous phase slips; our theoretical results suggest that
the time interval after the transition but before the next tranthe spatial inhomogeneity of phase slips in a sample may be
sition. important in determining the number of memories retained at

Thus we have been able to characterize the local dynameng times. Further experiments to quantify the spatial de-
ics, and describe thie— 0 limit of the model. However, we pendence of noise in CDW materials would help determine
have not addressed the evolution of the large-scale structuighether the theory is applicable to noise production in this
of the system. Referendel] presents numerical evidence experimental situation.
that the entire large-scale structure of the nonlinear equations Because the noise stabilization depends on the detailed
is well approximated by the evolution of linear equations ofspatial characteristics of the noise, it will be quite sample
motion obtained by replacind™*°Ty] by y—% in Eq. (3). dependent. On the other hand, in the absence of noise, the
As discussed in Ref[1], this observation enables one to dependence of the duration of the transient memories on
perform accurate estimates of when memories form andample size follows from rather general arguments and
when they are forgotten as a function of system size anghould be robusfl]. Therefore, systematic investigation of
model parameters. In Appendix B we present an analytithe time evolution of the transient memory response in
bound on the error in the evolution of the curvatures madesamples with as little noise as possible is therefore probably
when the dynamical equations are linearized and show thahe most promising avenue towards making comparison be-
this error is bounded uniformly in time and logarithmically tween theory and experiment.
in the system size. In this paper we have shown that it is possible to obtain a

In this subsection we have obtained #e 0 behavior via rather complete theoretical understanding of our dynamical
an explicit limiting process of the dynamics wit¥ 0. In  system in the limit of very weak springk—0. However,
Appendix A we show that this limit is well defined and pre- real CDW materials such as NbStend to be described by
scribe how to define th&—0 limit of the model without the model in the larg&-regime[20]. Therefore, quantitative
reference to averages of thke-0 dynamics. We also sketch comparison between this theory and experiment cannot be

Uj:Uj0+

=Uj+1_2Uj+Uj,1,
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expected. Understanding how the memory behavior evolveg_. 0. Specifically, we show that given valuegTo) for j

ask is made large and providing quantitative theoretical pre-_ 12 N there is a unique consistent way to def'u](i)

dictions in the regime relevant to experiment is an importan% ~ ~ ~ . . N .
or t such thatt>t,, valid up until the next transition. This

subject for future investigations. . . X
) ¢ fact, together with the observation that the functiangt)

are continuous, enables us to show thatkke limit of our
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(1) The sitej could be stuckmore precisely, the curva-
ture of sitej could be stuckand the value o€; will execute

In Sec. VB we defined th&—0 limit of the model in  a cycle(possibly of period L near the integer. In this case,
terms of averages of the behavior of the model with nonzergve havem—1<u;<m and the site has zero average drift.

k. In this appendix, we demonstrate that this limit is well (2) The site could be drifting up on average. In this case,
defined and show how to construct it without reference to the;>m after the transition so that;=m.

system with nonzer&. In Appendix A 1 we discuss a single (3) The sitej could be drifting down on average. In this
integer memory, while in Appendix A2 we consider briefly casec;<<m after the transition so thatj=m—1.

the rather straightforward generalization to the case of mul- Since we have that the average drift rate for thejsitiéer

APPENDIX A: THE k—O0 LIMIT

tiple memories. the transition is given by
1. Thek=0 limit dg; ~ ~ ~
. E:uj+l(t)_2uj(t)+uj71(t): (A2)

We recall that our original model was defined in terms of
a discrete-time indek and wish to introduce a rescaled time

T=kt and consider the limik—0 witht finite. The problem
we are addressing is, given valug$t) forj=12,... Nat ui(H)>m—1  implies that;, ;(t) — 2u;(t) +u;_1(t)=0,
some timet, can the corresponding;(t) be generated 5 5 5 5
uniquely? If so, then becausdc;/dt=u;.,(t)—2u;(t) uj(t)<<m implies thatu; 1 (t) —2u;(t) +u;_1(1)<0.

*+U;_4(1), the entire time evolution is determined. . These conditions are independentkpfand we require that

As stated, this problem is not solvable in general. This IShek=0 model satisfy them. In the=0 model, a site can be
because, even for a model with nonzétothe u; are not stuck only ifc; is exactly an integer. IE; is not exactly an

defme_d qmqpely a‘t‘a tra}'ns]uon at W.h'Ch the sites go from integer, then since,(t) is continuous, we have
one distribution of “stuck” sites or a given cycle structure to
another. As an illustration, consider the system = ~

Y uj(To,) =" c;(Tp)], (A3)

we have the following consistency conditions:

ci(t+1)=cq (1) —k{ug+u,—2dMTc ()]}, (A1 -~ ~ ~
il )=l ~k{uo T Uz le®l, (AD wherety, =lim._q,U(to+e€). If c;(tp) =ais exactly an in-

where ug=0 and u,=1. If initially c,(0)=1+7k/2, we €9l we have that

have cq.(t)=1+(7—-2t)k/t, t<4 and c4(t)=1
—(—1)'k/2, t>4. On the other hand, if initiallyc,(0)=1
—7k/2, then ci(t)=1—(7—-2t)k/t, t<4 and c,(t)=1
+(—1)'k/2,t>4. Therefore, fot<4, the two different ini-
tial conditions yieldu,(0)=1 andu;(0)=0, respectively. u*(cj)sujsu*(cj), (A4)
As k— 0, both these situations correspond to the same initial

conditionc;(0)=1, and therefore it is clear that there is awhere — u (x)=lim_ o, ®"(x—€)  and  u™(x)
transient period when;(0) is not defined uniquely. None- =lim, ., ®"(x+¢€). The functionsu® andu~ satisfy a
theless, since both initial conditions in the example yieldmonotonicity condition

u,(t)=1/2 for t>4k, in the limit k=0 it is consistent to
defineu,(t)=1/2 for all't>0.

Here we demonstrate thag(t) for T>0 can be defined for all a<b [this follows from the fact thatd(x)
uniquely for all possible initial conditions of the model with <®°°(y) if x<y]. This implies that for any given valug
nonzerok that lead to the same initial configuration@$ as  there is at most one value ofsuch that it is possible for a

a—1=<u;(tos)<a.

We can combine the preceding two equations to obtain

u (a)<u®(a)<u (b)<u'(b) (A5)
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site with ¢;=c to haveu;=u. This monotonicity gives the
following consistency requirement on the definition of the

Uj (t0+)-
Uj(ﬁt‘o+)> ui(cj(ﬁfO))

implies that uj(to+) —2u;(Tos) +uj_1(to1)=0,
(A6)
uj(to+)<u™(cj(tp))

implies that u;,1(tos)—2u;(To1)+u;_1(To4)=<0.

For brevity, we will henceforth suppress the time arguments;

c; will representc;(to) andu; will representu;(to. ).

We are trying to generate thg given thec; so that the
k=0 model is well defined. Given the;, we can take an
initial condition of the formE]:chrkF]— , where theF; is a
given arbitrary bounded sequence, and chdosefficiently
small so thatE,- is not an integer ifc; is not an integer and
c;—c;|<1/4 for allj. Then theu; obtained by following the
dynamics in a model with finitd starting from this initial
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First consider the situation wheng,=u,=0. We are
given a sequence; (0<j<p) and hence funct|ona ()
andu; (c) that satisfy the monotonicity cond|t|o¢A5) for
each O<i <p. The dynamics of the; are determined by Eq.
(A2) and eachu; must satisfy the constraint; (c;)=<u;
<y (c) Our earlier results generalize to thls case and it
follows that there is a unique assignment of thethat sat-
isfy the consistency conditions in EGA6). In this situation
we have the following result.

Claim 1 Letj* be an index where; (c;) attains a maxi-
mum for O<j<p and uj;(cj*)>0. Then we must have
Ujx :Uj*(Cj*).

Proof: Assume that this is not true. Then, we must have
uj*>uj_*(cj*) and the consistency condition requires that
Ujx 41+ Ujx 1 —2U;x=0. It follows thatu;« is not a strict
maximum foru; for O<j<p. Let O<m<p be such that
Um=Uj. Since the maximum value far; (c;) was attained
atj=j*, it follows thatu,,>u(c.). Therefore, by the pre-
ceding argument witm in the place of*, it follows thatu,

is not a strict maximum foru;. Consequently, u;

< max(p,u,)=0 for all 0<j<p. This contradicts the fact

condition and looking at the averages after any initial transithat theu; are constrained to be greater than or equal to
tions will satisfy the consistency requirements. However, itu;"(c;) andu, ;+(€jx)>0.

is not clear that this procedure gives a unique definition of * A similar argument shows that jf* is an index where

u.

a To show that there is only one consistent way to defipe
for a givenc; , we assume the opposite. Luftandu be two
d|st|nct definitions foru; that are both consistent. Bou'g
and u] sausfy the same boundary conditions, so thgt
—u3=0 anduN uz=0. Sinceu'# u?, there is some index
j* for which ul i u]*aﬁo Without loss of generallty, we
choose the Iabels S0 thaﬁ—u >0. Sinceug—u3=0 and
uN uN 0, there must eX|st |nd|cep and g W|th p<j*
<q such thalul—u 2<0, u —u;=<0, andui —u?>0 for all
p<j<q. By Eq (A4) u; >u (c) S0 thatu >u (cj) for
all p<j<q Equation (A6) therefore reqwres thauHl
+u 2u1>0 for all p<j<q Equation(A4) also implies
thatuj<u*(c) so thatus 2<u*(cy) for aII p<]<q Equa-
tion (A6) therefore reqwres thalf+1+ Uj_ 1~ 2u; 2=0 for all
p<j<g. Combining these two results, we have

(Ujl+1_Uj2+1)+(ujl—1_sz—l)_z(ujl_ujz)zo
for all p<j<gq. This implies that ifujl—uj2 attains a maxi-
mum on p<j<q, it is a constant fop<j=gq. Therefore,
u —Uj 2< max} —up q) 0 for aII p<j<gq. This con-
tradlcts our assumpuon thznt1 —u >0, and proves that
there can be only one conS|stent def|n|t|onLq)fg|ven Ci

u; (c) attains a minimum for &j<<p and uj*(cj*)<0
thenuj* *(CJ*)

If u; (c; )<0 andu (cj)=0 for all 0<j<p, the preced-
ing result does not glve us any information. However, in this
case we can sai;=0 for O<j=p. Since this assignment
satisfies the constraint and the consistency conditions, by our
earlier result, it is the unique consistent definition Qr

Now we can solve the problem of assigning thegiven
thec; for thek=0 model recursively. Assume that we know
u,=a anduy=b with p>q [26]. Let

i e
I,=aq—+b—p.
a-p —-p

Forp<i<q defineu;"(c)=u;"(c)—I; andu;=u;—1;. Since

lj41+1;-1—21;=0, it follows that we are precisely in the
situation that we considered above.
We setu;=I; for all p<j<q and check to see if

U; (¢;)=<0 andu;"(c;)=0 for all p<j<g. If not, we find an

index j* and fix uj+ as in Claim 1 above, and repeat the
procedure forp<j<j* andj*<j<q. This determines all
the u; recursively in no more thaN steps.

The u; determine the time dependence of tbis via

This proves the claim from Sec. V that averaging over thedC,/dt—U,+1 2uj+u;_;. The complete solution between

cycles in ak#0 model gives a consistekt=0 model.

Now we present a prescription for generating thérom
the c; without any reference to the# 0 model. The process
consists of identifying all sites whos€s must be integers,
requiring that all the remainings’s satisfy uj,,—2u;
arejsatlsfled If not, then there is at least one additional sit

whoseu is an integer, and one such site is identified. This

process is iterated until all the constraints are satisfied.

=0, and checking to see whether all the constraints

the transitions at=t, andt=1,_ ; is given by

<t<

¢;(1)=c;(ty) +r;(t-1,) for 1, to.1. (A7)

e 2. Multiple memories

Now we extend our analysis of the—0 limit to the case
of multiple memories. We find
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de. 1. Analytic bounds on behavior on large scales
—= Ujr1—2U;+U; 4, (A8) for the map without noise

In this subsection we present an analytic bound on the
error in the curvatures that is made when one approximates

with the U; given by the full nonlinear Eq.(3) with the linearized version Eq.

1 Pt (B1). As discussed in Refl], numerically we observe that
U=— 2 q)floor[c (to+ 1) —A(to+1)] (A9) the error in the curvatures made by approximating the non-
) pj =0 linear equation with the linearized one is of order unity for
all system sizes, boundary conditions, and initial conditions.
if the sitej is stuck in a cycle of periog, , and The analytic bound presented here, valid for khe O limit
j

of the model, demonstrates that the difference between the
Hoor _configurations of _the two equa_\tion_s is bounded by an amount
U=y tzo O™Tcj(to+t) —A(to+t)]  (A10)  independent of time and which increases only logarithmi-
cally with the size of the system. This result provides further

evidence that the long wavelength behavior of the nonlinear
equations(though not the memory formation itsglan be
estimated accurately using the linearized equations.

We proceed by writing the equation of motion for the

M-1

if the sitej is drifting, i.e., the fractional part of; is not
equal to the fractional parts of any of the forcings
A(1),A(2), ... ,A(M). We define

L M-t nonlinear system, Ed3), in the limitk=0 as
U = lim — >, ®Mc.—e—A(m)] (A1l _
oM =0 i dc;(1)
eor i~ G+ =260 +¢-1()
and ~[6:1(0-28,0+5_4(0], (B2

1 M-1
= lim — Z 10T+ e—A(M)].  (A12)

e—0+ m=0

where §;(t)=0"(c; - A(t))— 1/2. The definition of® "™,

the fractional part function, implies that 1/2< 6;(t) <1/2

for all j andt. For brevity, here we drop the tilde and use
egenote a continuous-time variable. We compare the solution
%Q Eq. (B2) to that of the(linear equation where;(t)=0

or all j andt, starting from the same initial condltlons We
denote the solution to the nonlinear equatm(t) and the

solution to the linearized equation B§t).
APPENDIX B: THE LINEARIZED MAP We define

Then we can assign the stuck sites and the drifting sit
by the same procedure as for the single memory except th
we replaceu” by U~ andu® by U™,

In this appendix, we address the large-scale dynamics of

the system by examining a linearized equation obtained by L ol
approximating thed°® function in Eq. (3) with z—1/2, Aq()= \/— ; ¢V, (B3)
yielding the linearized map:
CJ(t+ 1)_Cj(t)zk[CJ+1(t)—2CJ(t)+Cj,l(t)] (Bl) Bq(t) E |QI5 (84)
i

Although this linearized map contains no information about _ o
the memory formation, it captures accurately the behavior ofind Fourier transform E¢B2), obtaining
the system at large scales. Referelidepresented numerical

evidence for this observation, and showed that it enables one dAq(t) _

to obtain analytic estimates on the dependence of the dt ~glAq(D) = Bq(D], (B5)
memory formation and forgetting processes on system size

and model parameters. with wq=2(1—cosq). This equation has the soluti¢@1]

This appendix has two subsections. In the first, we present
an analytic bound on the difference between the configura- e _ ot [Caer ot o o
tions generated by the linear and nonlinear equations starting “a(t) =€ TAq(t=0)+ wqe thodt e’ By(t').
from the same initial conditions. This bound on the differ- (B6)
ence grows logarithmically with system size, which is very
slowly indeed. Therefore, although the memories are absemote that the first term on the right hand side of E8g) is
in the linearized equatiofindeed, theA(t) drop out en- just I, (t) the solution to linearized equation with=0.
tirely], the linearized equation yields a very accurate deSCflpTherefore if we define the deviations from the linearized
tion of the system’s behavior on large scales. solutions

The second subsection discusses the effect of the noise on
the linearized map. We demonstrate that the difference be- Acj(t)=c;(t)—1;(1) (B7)
tween the configurations yielded by the nonlinear and the
linear equations differs by no more than an amount of unityand



PRE 59 NOISE STABILIZATION OF SELF-ORGANIZED MEMORIES 4981

1 N where, againN is the length of the chain. In more dimen-
AAL(D)=Aq(t)—— E e'vl;(1), (B8)  sions, a similar calculation yields the result that the bound
YN grows logarithmically with the linear dimension of the sys-

tem. Thus, the linearized map deviates from the exact solu-

tion by an amount that is bounded at all times by an amount

¢ that grows very slowly with system size. The deviations ob-

AAq(t)zwqe‘"’q‘f dt’e“’q‘/Bq(t'). (B9) served numerically are smaller than this bound; this is not

0 surprising because the bound is obtained for a particular

. , ) choice of correlated's, which is unlikely to be generated by
Fourier transforming, we obtain the dynamics.

then

1 Lo t /
_ =) —wgt wgqt
Acj(t)= N Z % e g fodt’e @ o () 2. Linearized map with noise
i

(B10) A bit more insight into the linearized equation can be
obtained by investigating the long-time behavior of the lin-
t o, . d . earized map with noise added for the “nailed” boundary
:Z jodt Oy ()5 Gy (=17, (B11)  condition. We show that the difference between the curva-
! ture values in the linearized solution and the nonlinear solu-
where tion is bounded above by an amount of order unity.
We start with Eq.(13) together with Eq(11), yielding

j
> P

n=1

1 o , —
Gi_i/(t—t")== E ela(i’ —DHgeqt’—t) (B12) 1 fotTave X
1= N q E (I)floor[cj(t)_A(t)]: _ ;

Tave t=tg
is the Green function specifying the response at jsiémd (B16)
time t to a disturbance at sitg and timet’ [22,23.

To proceed further, we investigate the Green function, EQyye |inearize this equation by replacidef®*(z) —z— 1 and
(B12). Up to now our manipulations have been exact for anygptain
length chain, but now we specialize to the case of long
chains, for which the sum ovey can be replaced by an

integral, yielding(Ref.[24], 9.6.19 — _x 21: - L o
i T & n 5
Gjj(n)=1j_j(2n)e %, (B13) = 2

WhereIV(x) is the modified Bessel function of the first kind We can compare this result with that for the nonlinear

of orderv. If j"=], thenG;_;,(7) monotonically decreases equations. To do this, we can use the boudq

from 1 to 0 asr goes from O toe, while for ' #j, G;_;.(7) <Cjnonlinea(t)$cj +1 [recall c¢;(t)=C+dc;(t), with 0

has a single maximum as a functionofit rises from zeroto sc;(t)=<1], and cast Eq(20) as the inequality

a maximum value and then decreases back to zero at targe

At large distances and long times, the contribution of large

g's is suppressed exponentially, so that it is very accurate to nonlinea

approximatew, with its smallg limit, w,~q?, yielding the Cj ()=~
q q

Green function 25]:

G--,(t—t’)E;exr{ - ﬂ] (B14
7 Am(t—t') A(t—t")

X J 1
;2 Pn+

M
2 q)floor[Am]+ 1
n=1 m=1

<

<cfonneaft) + 1. (B18)

Using the inequalitiex — 1< ®1°°Tx]<x, we find

This function has its maximum when-t’) =j?2/2, with the

valueG?, =(\Zmelj—j'l) " | cponines 1)< et
The simple behavior of th&'s, together with the bounds

—1/2<6;,(t')<1/2 for all j" andt’, can be used to bound

|Acj|. The absolute value of the right hand side of EgfL1) ' ___ 3

is maximized if6=1/2 whenever the time derivative Gfis cfonineat) > cjnear— 5 (B19)

positive, andé= — 1/2 whenever the time derivative & is

negative. Thus, one obtains the bound for long chains:

’

The difference between]"™ and c¢[°""**is thus bounded
|ch(t)|$1+ Z Gj*'—j by an amount of order unity even as the system Bizex.

i #] Thus, though once again the linearized model does not yield
information about the memory values exhibited by the sys-
~1+ 2 (V2melj—j’]) "t In(N), (B15) tem, it does provide an accurate description of the large-scale

i’ # variations of the configuration.
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