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Noise stabilization of self-organized memories

M. L. Povinelli,* S. N. Coppersmith, L. P. Kadanoff, S. R. Nagel, and S. C. Venkataramani†

The James Franck Institute, The University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637
~Received 31 December 1998!

We investigate a nonlinear dynamical system which ‘‘remembers’’ preselected values of a system param-
eter. The deterministic version of the system can encode many parameter values during a transient period, but
in the limit of long times, almost all of them are forgotten. Here we show that a certain type of stochastic noise
can stabilize multiple memories, enabling many parameter values to be encoded permanently. We present
analytic results that provide insight both into the memory formation and into the noise-induced memory
stabilization. The relevance of our results to experiments on the charge-density wave material NbSe3 is
discussed.@S1063-651X~99!06305-9#

PACS number~s!: 05.65.1b, 05.45.2a, 72.15.Nj
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I. INTRODUCTION

This paper concerns a nonlinear dynamical system w
many degrees of freedom which organizes to store me
ries, in that a configuration-dependent quantity is driven
take on preselected values. In Ref.@1# it is shown that in the
absence of noise, the system encodes many memories d
a transient period, but in the limit of long times retains
more than two of them. Thus, the purely deterministic s
tem ‘‘learns,’’ and then it ‘‘forgets.’’

We examine the effects of adding noise to this system
demonstrate that certain types of noise can stabilize mult
memories so that they are remembered permanently.
noise stabilization is possible because the memory forma
mechanism is fundamentally local, whereas forgetting
governed by the large-scale behavior of the system. Thu
is possible for certain types of stochastic noise to modify
behavior at long wavelengths without destroying the lo
nonlinear dynamics which give rise to memory creation.

We argue that the type of noise that we have found
stabilize multiple memories is likely to be present in som
experiments on charge-density wave~CDW! conductors
such as NbSe3. Thus, our results could explain the expe
mental observation of multiple apparently permanent mem
ries encoded in individual samples reported in Ref.@1#.

Our analytic investigations of the behavior of this syste
both with and without noise show that insight into th
mechanisms underlying memory formation as well as no
stabilization can be obtained by averaging the dynam
equations over intermediate-time periods. We determine a
lytically the dependence of the memory values on the no
parameters in the limit when a certain parameterk tends to
zero. The large-scale behavior of the system follows clos
that of a linear diffusion equation; we present analy
bounds on the differences between the evolution of the n
linear equations and that of the linearized system that
uniform in time and logarithmic in the system size. Some
the analytic results for the system without noise were

*Present address: Physics Dept., MIT, Cambridge, MA 02139
†Present address: Math Dept., University of Chicago, 1100 E. 5

St., Chicago, IL 60637.
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serted but not justified in Ref.@1#.
The paper is organized as follows. Section II briefly r

views the deterministic version of the model. Sections
and IV present our numerical work demonstrating that no
can stabilize multiple memories. Section V presents our a
lytic work which enables us to understand why noise c
keep memories from being forgotten and also presents
averaging procedure which allows us to obtain analytic
sight into the transient memories present in the map with
noise in a certain limit. Section VI discusses our main resu
and possible relevance to CDW experiments. Appendix
demonstrates the uniqueness of the limit obtained by the
eraging procedure of Sec. V and also discusses explicitly
limit for the case of multiple memories. Appendix B com
pares the time evolution of the full nonlinear system with t
time evolution of a linearized model and shows that the l
earized equations reproduce accurately aspects of the e
tion on large scales~though not the memory formation it
self!.

II. THE MODEL

First we present the model with no noise, which is t
system of coupled maps studied in Ref.@1#:

xj~ t11!5xj~ t !1FfloorFk (
i ~nn!

@xi~ t !2xj~ t !#2A~ t !G .
~1!

Here, i , j are the site indices, the sum is over nearest nei
bors, t is a discrete time index, andFfloor@z# is the largest
integer less than or equal toz. This system of maps can b
derived from continuous-time differential equations descr
ing the purely dissipative evolution of the positionsxj of N
particles in a deep periodic potential, with nearest neigh
particles connected by springs of spring constantk!1 ~see
inset, Fig. 1!, in the presence of force impulses@2A(t)
1 1

2# @2–4#. These equations describe the dynamics of slid
charge-density waves@2,5,7#, and are closely related to mod
els of a variety of dynamical systems@9#. In this paper we
will consider explicitly only one-dimensional systems ofN
degrees of freedom with one free and one fixed end,x0(t)
50 andxN11(t)5xN(t), starting from the initial condition

th
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xj (t50)50. However, it is straightforward to generalize a
most all the results to a variety of different boundary con
tions and to more dimensions.

The memory formation that occurs as these maps ev
is manifest in the discrete curvature variables@10#

cj~ t !5k (
i ~nn!

@xi~ t !2xj~ t !#. ~2!

It will be useful to write the dynamical equations in terms
the curvature variablescj (t) rather than the particle position
xj (t). The equations of motion for thec’s are

cj~ t11!2cj~ t !5k$Ffloor@cj 11~ t !2A~ t !#

22Ffloor@cj~ t !2A~ t !#

1Ffloor@cj 21~ t !2A~ t !#%, ~3!

the fixed chain boundary conditions are@11#

c0~ t !5A~ t !, ~4!

cN11~ t !5cN~ t !, ~5!

and the initial conditions are

ci~ t50!50, iÞ0. ~6!

Figure 1 shows for these initial conditions the curvatu
variablescj (t) versus timet for a five-particle chain when
A(t) is cycled sequentially through five different value
Memory encoding is manifest by the tendencies ofc’s to
take on values whereQ frac(c)5Q frac

„A(t)…, whereQ frac(z)
5z2Ffloor(z). That the curvature variables take on valu
whose fractional part is equal to the fractional part of t
force impulse in the maps implies that for the balls a
springs, just at the end of each force pulse a significant f

FIG. 1. Plot of curvaturescj (t)5k@xj 11(t)22xj (t)1xj 21(t)#
versus scaled time variablek* t for Eqs. ~1! with no noise and
boundary conditionsx0(t)50, xN11(t)5xN(t), starting from the
initial condition xj (t50)50 for j 51, . . . ,N. System parameter
are given on the plot. The horizontal regions in the graphs oc
when the fractional part of one of the curvature values equals
fractional part of one of the values ofA. Notice that while the balls
spend some time on each of the memory values, all the curva
values eventually end up at the single memory value 0.9. In
sketch of balls and springs in periodic potential, a physical real
tion of Eqs.~1!.
-

e

.

s
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tion of the balls are found near the tops of their poten
wells @6#. The system ‘‘memorizes’’ the force values an
adjusts itself so that the balls are at the well tops just as
pulses end.

As seen in Ref.@1# and here in Fig. 1, if a repeatin
sequence of pulses of different lengths is applied, then fo
while all the values are encoded. However, at long times
system eventually reaches a fixed point where it stops ev
ing. At the fixed point, the curvatures are all the same; o
one memory is remembered. We have found that using p
odic, free, and fixed boundary conditions for thex’s, chang-
ing the initial conditions, and incorporating quenched~time-
independent! randomness to the model do not increase
number of memories retained at the fixed point beyond 2

Here we investigate how this system can be modified
that it can remember more memories permanently. We sh
that certain types of stochastic noise which are likely to
present in some CDW experiments can do this and st
both numerically and analytically the reasons for t
multiple-memory stabilization. We show that the stabiliz
tion of many memories arises because the noise contai
deterministic component which causes the curvature v
ables to sustain a large-scale spatial variation even in
limit of infinite time. The purely stochastic elements of th
noise act to destabilize the memories; we will see that th
destabilizing effects vanish in the limitk→0.

The following two sections present our numerical inve
tigations of the model with noise.

III. TECHNIQUE: ADDING NOISE

Noise terms can be added to Eq.~1! in a variety of ways.
Noise which is uncorrelated in both space and time, or
correlated in time but spatially uniform~e.g., fluctuations in
the pulse amplitudes! does not lead to memory stabilization
However, we have identified a type of noise which is phy
cally plausible that stabilizes multiple memories.

The memory-stabilizing noise we study here is defined
modifying Eq. ~1! as follows. Everyt time steps, an index
j D with 1< j D<N is selected, and for allj . j D , the posi-
tions of balls j D throughN are shifted by a fixed integerX
@8#,

xj~ t11!5H xj~ t !1Ffloor@cj~ t !2A~ t !#1X if j > j D

xj~ t !1Ffloor@cj~ t !2A~ t !# otherwise.
~7!

The relative positions of all the balls are unchanged exc
for the distance betweenxj D

andxj D21, so the disruption is
local.

Equivalently, one can write the map with noise in term
of the curvature variables, as

cj~ t11!2cj~ t !5k$Ffloor@cj 11~ t !2A~ t !#

22Ffloor@cj~ t !2A~ t !#

1Ffloor@cj 21~ t !2A~ t !#%

1kXd t~modt!,0~d j , j D212d j , j D
!, ~8!
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FIG. 2. Effect of adding noise to the syste
of Fig. 1, again starting from the initial condition
xj (t50)50 for j 51, . . . ,N. On each panel the
curves from top to bottom arec1(t), . . . ,c5(t).
Unlike the case without noise, four memory va
ues ~0.9, 0.7, 0.5, and 0.3! all appear to persist
out to long times. In~a!, one of the curvature
variables fluctuates far from memory values, i
dicating that noise can destabilize as well as s
bilize memories. In~b!, the parameterk has been
reduced, with all other parameters held fixe
here, the fluctuations in the curvatures are mu
smaller.
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where the Kronecker deltad i , j is unity if i andj are identical
and zero otherwise. In either formulation, the noise does
affect the boundary conditions.

This type of noise models the physical process of bre
ing the spring connecting ballsj D and j D21 and then sub-
sequently reconnecting them with a spring of longer u
stretched length@12#. This choice of noise is motivated b
phase slip processes known to occur in CDW materials@13#.
When the model is applied to CDW’s, the variablexj in Eq.
~7! is interpreted as the phase of the charge-density wav
the j th impurity site in the sample, measured relative to
undistorted configuration@14–16#. If a phase slip causes a
extra wavelength of the CDW to be inserted between t
impurities, then the ‘‘unstretched’’ phase difference betwe
two impurity sites increases.

IV. NUMERICAL RESULTS

Figure 2~a! shows the behavior of a system identical
that of Fig. 1, except that noise has been applied@Eq. ~7!#,
using the parameter valuesX59 and t513. Figure 2~b!
shows the time evolution in the presence of noise fo
smaller value ofk. Otherwise the parameters in Fig. 2~a! and
Fig. 2~b! are identical; in both cases, the indexj D in Eq. ~7!
was selected randomly and with equal probability from
indices 1, . . . ,N. Figure 2 demonstrates that when noise
ot

-

-

at
n

o
n

a

e
s

present, more memories are stable at long times than for
noiseless case, Fig. 1. The noise also exhibits a destabili
effect, as evidenced by the fluctuations in the curvature v
ues. As comparison between Fig. 2~a! and Fig. 2~b! demon-
strates, these fluctuations become smaller as the paramek
is decreased. Numerically we find that at timest0 long
enough that the behavior appears to be stationary, the s
dard deviation of the curvatures from their memory valu
$(1/T)( t5t011

t01T
@cj (t)2mj #

2%1/2 is proportional tok ask→0.

Changing the parametersX andt can change the numbe
of different stable memories and their values. Below we w
show that the memory values attained by each particle in
system can be calculated analytically by averaging the eq
tions of motion of the system.

Deterministic noise

In the numerical simulations shown in Fig. 2, the indexj D
was chosen randomly and with equal probability from t
indices 1, . . . ,N. It is useful to consider a ‘‘deterministic’’
version of noise, where rather than selectingj D randomly,j D
is cycled systematically through the indices 1 –N, so that
each index is selected exactly once during each noise cy
~We refer to a ‘‘noise cycle’’ as theNt steps it takes to make
a complete cycle through the indices 1 –N.) One such
choice, used for our numerics, is to cycle through the indi
in order, so that
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xj~ t11!2xj~ t !5Ffloor@cj~ t !2A~ t !#

1Xd t~modt!,0u1S j 2
t

t
~modN!11D ,

~9!

whereu1(y)51 if y>0, and zero otherwise. The behavi
is substantially identical for any sequence in which each
dex is chosen exactly once per noise cycle.

Our numerical investigations of the evolution of Eqs.~9!
over a wide range of parameters and initial conditions in
cate that eventually the system always reaches a peri
orbit. The period of the observed cycle is either equal to o
divisor of NtM , where againN is the number of balls,t is
the interval between noise pulses or kicks, andM is the num-
ber of memories. Figure 3 is a plot of the time evolution
thecj (t) for a five-ball system (N55) with the same param
eter values as Fig. 2, but with deterministic kicks. The gr
features of the curves are very similar, but the fluctuation
the curvature values observed for stochastic noise have
replaced by a regular, repeating pattern~Fig. 4 shows an
expanded view of this pattern for two of thecj ’s!. The ex-
cursions during the cycles have amplitude proportional tok.
These regular cycles facilitate analytic investigation of
dependence of stable memories and their values on the
rametersX and t. The number of memories remembered
long times whenk is small depends systematically on th
ratio X/t and not onX and t separately. Figure 5 show
numerical results for the dependence of the long-ti
memory values onX/t and demonstrates the good agreem
with the analytic predictions presented in the next sectio

V. THEORETICAL ANALYSIS

In this section we show how various aspects of the beh
ior of the maps both with and without noise can be und
stood analytically in the limit thatk→0. In Sec. V A we

FIG. 3. Time evolution of the curvatures in a system of fi
particles (N55) in the presence of deterministic ‘‘noise.’’ Excep
for order of the sequence of noise kicks, the system is identica
that in Fig. 2~a!. The curves from top to bottom ar
c1(t), . . . ,c5(t). Note the similarity in the large-scale features
these curves, where deterministic noise has been applied, with t
with random noise, shown in Fig. 2.
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discuss the map with deterministic noise. The observa
that at long times a periodic orbit is always reached can
exploited to predict the dependence of the long-time mem
values on the noise parametersX andt. A key ingredient in
this analysis is the examination of the time-averaged eq
tions of motion of the system.

In Sec. V B we address the model without noise. Beca
in this case most of the memories are transient and there
are no longer present when the fixed point is reached
modified averaging procedure must be used. This proced
yields insight into the transient memories and enables u
demonstrate that a well-definedk→0 limit of this model
exists.

FIG. 5. Numerical results for the curvature values observed
long times as a function of the parameterX/t for a system with
N53 and deterministic noise. For these computationsk50.0003,
but the results are insensitive tok whenk is small. The solid lines
are the analytical prediction for these curvature values using E
~21! and ~17!. The number and value of the stable memory valu
for given X/t can be read from the graph, keeping in mind th
curvature values which differ by an integer are on the sa
memory. For example, forX/t53, c1'1.3,c2'0.3, and c3

'20.7, so there is one stable memory for these parameter va
Other choices ofX/t ~such asX/t51.1) yield more stable memo
ries.

to

se

FIG. 4. Plot of two curvatures in the system of Fig. 3 vers
time on an expanded scale. Parameter values arek50.001,N55,
A5@0.1,0.3,0.5,0.7,0.9#, X59, t513, with deterministic noise.
The plots showc1 andc2 versus time after the long-term behavio
has been reached. The behavior is periodic; the period is 65
steps, the length of one noise cycle forN55 andt513.
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A. Long-time behavior of the map with noise

As Fig. 5 makes evident, there is domain structure to
dependence of the value and number of stable memorie
X/t for the map with noise, Eqs.~7!. Here we calculate
analytically the structure of these domains whenk!1 by
finding the memory value of each site as a function of
system parameterX/t.

The equation of motion for the system is

xj~ t11!2xj~ t !5Ffloor@cj~ t !2A~ t !#

1Xu1„j 2 j D~ t !…d t~mod t!,0 , ~10!

whereu1(y) is defined after Eq.~9!. The j D’s are selected so
that the probability thatj D(t)5n is Pn . We examine first the
case of deterministic noise and discuss stochastic noise a
end of the subsection.

We define an averaging timeTave5NMt and

ū j~ t0!5
1

Tave
(
t5t0

t01Tave21

Ffloor@cj~ t !2A~ t !#. ~11!
in

a
e

e
on

e

the

Averaging Eq.~10! over a timeTave yields

1

Tave
@xj~ t01Tave!2xj~ t0!#5ū j~ t0!1 (

n51

j

Pn

X

t
. ~12!

When t0 is large enough so thatxj (t01Tave)5xj (t0) for all

j, Eq. ~12! implies that theū j (t0) are independent oft0

~hence we drop the argument! and must satisfy

ū j52
X

t (
n51

j

Pn . ~13!

One can also derive Eq.~13! directly in terms of the cur-
vature variablescj (t)5k@xj 11(t)22xj (t)1xj 21(t)#. Aver-
aging Eqs.~8! over a time intervalTave yields
1

Tave
@cj~ t01Tave!2cj~ t0!#5H ū j 11~ t0!22ū j~ t0!1ū j 21~ t0!1~Pj 112Pj !

X

t
, j ÞN

ūj 11~ t0!22ū j~ t0!1ū j 21~ t0!2PN

X

t
, j 5N.

~14!

~15!
es

er-
of

e
of

an

x-

re-
If (1/Tave)@cj (t01MNt)2cj (t0)#50, as is true for a peri-
odic orbit, one has

ūN2ūN2152PNX/t,
~16!

ū j 112ū j1Pj 11X/t5ū j2ū j 211PjX/t ~1< j ,N!.

Equation~16! implies thatū j2ū j 211PjX/t is independent
of j, which together with the boundary conditions aga
yields ū j52(X/t)(n51

j Pn .
For simplicity, assume that none of theAm are exactly an

integer @17# and label the values ofAm such that 0
,Q frac(A1),Q frac(A2),•••,Q frac(AM),1. We now
show that whenk→0, every particle is almost always on
memory. Only for a set ofPn of measure zero are som
particles in the system not on memory values ask→0. At
long times, thej th curvature is on thel j* th memory„cj (t
→`) obeys Q frac@cj (t→`)#5Q frac@Al

j*
#1O(k)…, where

the memory indexl j* is

l j* 511FfloorF2M
X

t (
n51

j

PnG1 (
m51

M

Ffloor@Am#

2MFfloorF2
X

t (
n51

j

Pn1
1

M (
m51

M

Ffloor@Am#G .

~17!
Perhaps surprisingly, which ball is on which memory do
not depend on the memory valuesQ frac(Am). This analytic
prediction is completely consistent with our numerical obs
vations; this agreement is illustrated by the consistency
the analytic and numerical results presented in Fig. 5.

We derive Eq.~17! by writing cj (t)5Cj1dcj (t), where
eachCj is an integer independent oft, and dcj (t) obeys 0
,dcj (t)<1 for all t. This decomposition can always b
done ifk is small enough because the maximum excursion
eachcj during the averaging interval is proportional tok, and
everycj will turn out to be on a memory and hence not at
integer. We definedAm5Am2Ffloor(Am) and

dū jm5
1

Nt (
t5t0

t01Tave21

$Ffloor@dcj~ t !2dA~ t !#%dA~ t !,Am
,

~18!

and rewrite Eq.~13! as

2
X

t (
n51

j

Pn5Cj2
1

M (
m51

M

Ffloor~Am!1
1

M (
m51

M

dū jm .

~19!

Now dū jm521 if dcj (t),dAm and dū jm50 if dcj (t)
.dAm for all t during the averaging interval. Since the e
cursions during this interval are proportional tok, they van-
ish ask→0; thus whenk is small enough thej th ball cannot
cross more than one memory value during a cycle. The
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fore, we can write(m51
M dū jm5211Qj1r j , whereQj is

an integer satisfying 0<Qj<m21, and ther j satisfy 0
,r j<1. Thus we have

2
X

t (
n51

j

Pn1
1

M (
m51

M

Ffloor~Am!115Cj1
1

M
~Qj1r j !,

~20!

with Cj andQj integers.
For simplicity we assume here thatMX/t(n51

j Pn is not
an integer for anyj <N, a condition which will ensure tha
r j,1, and hence (1/M )(Qj1r j ),1 @18#. Taking theFfloor

of both sides of Eq.~20! yields

Cj5FfloorF2
X

t (
n51

j

Pn1
1

M (
m51

M

Ffloor~Am!G11. ~21!

Multiplying Eq. ~20! by M and then taking theFfloor of both
sides yields

Qj5FfloorF2M
X

t (
n51

j

PnG1 (
m51

M

Ffloor@Am#

2MFfloorF2
X

t (
n51

j

Pn1
1

M (
m51

M

Ffloor@Am#G ,

~22!

which in turn implies

r j52M
X

t (
n51

j

Pn2FfloorF2M
X

t (
n51

j

PnG . ~23!

We see that it is consistent to assume that 0,r j,1 so long
as (MX/t)(n51

j Pn is not exactly an integer. Sincer j can
only be fractional ifcj crosses a memory during the avera
ing interval, ask→0 eachcj must be on a memory. SinceQj

determines the memory index vial j* 5Qj11, one obtains
Eq. ~17!.

Finally, to demonstrate consistency of the assumption
no particle can be on more than one memory, we must s
that the particle excursions over the averaging time are s
as k→0. This is easily done starting from the equation
motion for the curvatures Eq.~8! and noting that our solution
for the ū j satisfiesū j 1122ū j1ū j 2150. If no memory is
crossed, then the absolute value of the difference betwee
time average (1/Tave)( t0

t01TaveFfloor@cj (t)2A(t)#dA(t),Am
and

the correspondingFfloor@cj (t)2A(t)#dA(t),Am
cannot be big-

ger than unity. This bound implies that until a memory
crossed, the excursion per unit time of each of thec’s cannot
be bigger thank(41X). Since the memory values are sep
rated by an amount of order unity, ask→0 the number of
steps needed to reach the nearest memory diverges ask,
and the excursion during the averaging time cannot
greater thank(41X)Tave.

1. Importance of spatial distribution of the noise

So far we have mainly discussed the case of spati
homogeneous noise,Pn51/N for all n, and seen that if the
-

at
w

all
f

the

-

/
e

ly

noise causes each spring in the chain to break with eq
probability, multiple memories can be stabilized indefinite
However, in our analytic work we did not assume this sp
cial form for Pn , and one may ask whether the same resu
are obtained if, for instance, only the first spring were brok
repeatedly.

We address this issue by examining Eq.~17!. Note that if
Pl50 for somel, then particlesl 21 and l must be on the
same memory value. Thus, if only the first spring is repe
edly broken, there will be only one memory observed at lo
times, although its value may be different than in the noi
less case. However, thePn need not all be equal for multiple
memories to be stable at long times.

2. Stochastic versus deterministic noise

Now we discuss the behavior when the system is sub
to stochastic noise rather than deterministic noise. The
cial point here is that the equations of motion can always
averaged over some time intervalTave, and so long as all the
cj ’s stay roughly constant, there is no need for there to b
truly periodic cycle for the procedure above to apply. Ask
→0 the memory values will be exactly the same for rand
noise as for deterministic kicks with the same time-avera
spatial distribution of events.

Not surprisingly, the excursions of the curvatures ab
the memory values are larger for stochastic noise than
sequential kicks, all other parameters being held fixed. Th
are two mechanisms by which stochastic noise would
hance the size of the excursions. The first is that the sm
motions of the curvatures about their memory values
more erratic because the noise kicks are inhomogeneo
spaced in time, and the second is that fluctuations in
noise may temporarily cause the system to be driven t
memory value other than that determined by the tim
averagedX/t. Numerically we find that the excursions i
systems with stochastic noise are typically a few times
excursions observed in the deterministic case with the s
parameters, and that their magnitude is proportional tok.
These observations are evidence that the first mechanis
dominant; the second mechanism leads to a nonlinear de
dence of the excursions onk and also, since it depends o
how far each curvature is from the edge of the parame
range in which the memory in question is stable, leads
sensitive dependence of the excursion magnitudes onX and
t.

B. The behavior of the map without noise ask˜0

In this subsection we show that a modified averaging p
cedure can be used to obtain insight into the time evolut
of the system.

Above, we used the observation that at long times
behavior of the map with noise is periodic in time to calc
late how the memory values depend on the system par
eters. A key step in this calculation is averaging the eq
tions of motion of the system over an appropriate tim
interval. Here we present an averaging procedure applic
in the limit k→0 that can be used to obtain insight into th
time evolution and not just the long-time behavior.

Analyzing just the long-time behavior cannot yield insig
into transient memories, because in this limit almost all
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memories have been forgotten. Therefore, the technique
used in the preceding subsection of looking only at fix
points of the equations of motion is not so useful here. Ho
ever, Fig. 6, which shows the evolution of the curvatures
the system with no noise~the same numerical data as Fig.
on an expanded scale!, demonstrates that during the motio
two types of particles exist—sites whose curvatures
‘‘stuck’’ on a memory value, and curvatures that are in tra
sit between different memory values~‘‘drifting’’ !. A
‘‘stuck’’ site oscillates periodically about a memory valu
until a neighbor changes its status, at which time the st
site can either change its oscillation about the same mem
or can start to drift. Ask is decreased, it takes more and mo
time steps for the drifting sites to get between differe
memories, during which time they provide a constant en
ronment for their neighbors. In contrast, the period of
cycles of the ‘‘stuck’’ sites remains unchanged ask→0;
moreover, the amplitudes of the excursions about
memory values are proportional tok. In the limit k→0, the
drifting sites comprise a quasistationary environment for
stuck sites, and one can average the equations of motion
the period of the stuck sites’ cycles.

For simplicity, in this subsection we consider only th
case of a single memory withA50. The generalization o
the analysis to different memory values and to multip
memories is straightforward, and is discussed briefly in A
pendix A. We only discuss here the model in the absenc
noise, but the analysis is easily extended to the case w
noise is present, if desired.

The equations of motion for thecj (t) are

cj~ t11!5cj~ t !1k$Ffloor@cj 11~ t !#

22Ffloor@cj~ t !#1Ffloor@cj 21~ t !#%. ~24!

First consider the behavior of a sitej whose two neigh-
bors’ curvatures are both drifting between integers. Wh
the sites j 11 and j 21 are drifting, the quantities

FIG. 6. Plot of curvatures versus time on an expanded s
during the evolution of the noiseless system of Fig. 1. Param
values arek50.001,N55, A5@0.1,0.3,0.5,0.7,0.9#. The particles
can be divided into two types—those whose curvatures osci
periodically in time about memory values~for one case,c5, the
curvature on the memory is actually time independent untilc4 hits
a memory att;8660), and those in transit between memory valu
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Ffloor@cj 11(t)# andFfloor@cj 21(t)# remain constant, and we
can denote their~integer! values asI j 11 andI j 21 and define
h[(I j 111I j 21)/2. Equation~24! then becomes

cj~ t11!2cj~ t !52k$h2Ffloor@cj~ t !#%. ~25!

If h2Ffloor@cj (t)#.0, thencj (t) will increase in time until
h2Ffloor@cj (t)# is no longer positive. Ifh is an integer, then
cj (t) will stick at h, whereas ifh is a half integer, thencj (t)
will undergo a period-2 cycle about the integer valueh
11/2. If initially h2Ffloor@cj (t)#,0, then eventuallycj (t)
will stick just belowh11 if h is an integer, andcj (t) will
oscillate in a period-2 cycle cycle abouth11/2 if h is a half
integer.

If there areL stuck sites in a row, then the cycles of th
sites become longer, but simple periodic behavior is still o
served. We find numerically that the motion of each site i
stuck region withL sites is a cycle of lengthL11 or shorter.
Moreover, every time a site changes its status@for instance, a
drifting site might come withinO(k) of a memory value#,
the new cycle gets established in a time that remains finit
k→0. Therefore, ask→0, during the periods when the drift
ing sites at the boundaries of the region in question rem
between memories, we can average Eqs.~24! over the cycle
of lengthp. Defininguj5(1/p)( t5t011

t01p
Ffloor@cj (t)#, we ob-

tain

cj~ t1p!2cj~ t !5k~uj 1122uj1uj 21!. ~26!

All the terms on the right hand side of Eq.~26! are time
independent, implying that

cj~ t01p!5cj~ t0!1~kp!r j , ~27!

with r j5uj 1122uj1uj 21. Moreover, we can rewrite Eq
~24! during the averaging interval as

cj~ t11!5cj~ t !1kr j1kD j~ t !, ~28!

where D j (t)5Ffloor@cj 11(t)#2uj 1122$Ffloor@cj (t)#2uj%
1Ffloor@cj 21(t)#2uj 21 has zero mean and is periodic wit
period p. Also, becauseFfloor(cj ) of a stuck site does no
change by more than61, we haveuD j (t)u,4. Therefore, we
can write the complete solution of Eq.~24! for the interval
where all the stuck sites have settled into their periodic
havior and none of the drifting sites goes through an inte
as

cj~ t01 l !5cj~ t0!1~kl !r j1kh j~ l !, ~29!

where h j ( l ) is periodic in time and satisfiesuh j ( l )u
,4 max$pj%,4N for all j andl. The first two terms represen
the piecewise linear solution and the last term represents
cycles of amplitude of orderk superimposed on the piece
wise linear solution. Note that the difference between
piecewise linear part of the solution and the complete so
tion goes to zero ask→0.

We can define a rescaled time variablet̃ 5k* t and take
the limit of Eq. ~29! with k→0, kl finite, in which theuj
~and hencer j ) are independent ofk. The existence and
uniqueness of this limit is demonstrated in Appendix A.
this limit, the solution converges to
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cj~ t̃ 01 t̃ !5ci~ t̃ 0!1r i t̃ . ~30!

If a site j is drifting, we setuj5Ffloor(cj ), whereas if it is
stuck,uj is determined by requiring

r j5uj 1122uj1uj 2150. ~31!

When there areL stuck sites in a row ~say sites
uj 011 , . . . ,uj 01L , with uj 0

anduj 01L11 given!, then theuj

in the stuck region are obtained by solving Eq.~31!, yielding

uj5uj 0
1S uj 01L112uj 0

L11
D ~ j 2 j 0!. ~32!

Whenever all theuj ’s are fractional, every site in the regio
must be on a memory. The values ofuj 011 anduj 01L enter

into the drift rates ofcj 0
and cj 01L11 and hence must be

determined to obtain the time evolution of those sites.
One still needs to consider the behavior at the transiti

when the sites change between stuck and drifting. Beca
the number of steps needed to establish the new cycle s
ture is finite and independent ofk, these transitions are in
stantaneous in terms of rescaled time. Moreover, as we d
onstrate in Appendix A, the values of theu’s after each
transition do not depend on the details of either the old cy
structure or of the transition.

These considerations enable us to use the the piece
linear solution Eq.~30! to formulate ak50 model. In the
k50 model, if a sitei is stuck, thenci is exactly an integer.
Between transitions,

dcj

dt
5uj 1122uj1uj 21 , ~33!

where theuj are equal to theuj that are defined for a system
with nonzerok by averaging between the same two tran
tions. At each transition, thecj are continuous. However, th
uj change instantaneously to the new values appropriat
the time interval after the transition but before the next tr
sition.

Thus we have been able to characterize the local dyn
ics, and describe thek→0 limit of the model. However, we
have not addressed the evolution of the large-scale struc
of the system. Reference@1# presents numerical evidenc
that the entire large-scale structure of the nonlinear equat
is well approximated by the evolution of linear equations
motion obtained by replacingFfloor@y# by y2 1

2 in Eq. ~3!.
As discussed in Ref.@1#, this observation enables one
perform accurate estimates of when memories form
when they are forgotten as a function of system size
model parameters. In Appendix B we present an anal
bound on the error in the evolution of the curvatures ma
when the dynamical equations are linearized and show
this error is bounded uniformly in time and logarithmical
in the system size.

In this subsection we have obtained thek→0 behavior via
an explicit limiting process of the dynamics withkÞ0. In
Appendix A we show that this limit is well defined and pr
scribe how to define thek→0 limit of the model without
reference to averages of thekÞ0 dynamics. We also sketc
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how to generalize the analysis of thek→0 limit to apply to
the case of multiple memories.

VI. DISCUSSION

We have investigated the behavior of a simple nonlin
dynamical system which has the capacity to encode me
ries. The deterministic system can encode many memo
for a while, but at long times forgets almost all of them. He
we have demonstrated that there is a type of stochastic n
which enables the system to encode many memories pe
nently. The memory stabilization arises because the n
has a time average with nontrivial spatial structure; in p
ticular, it enables the curvature variables which describe
local force, to have large-scale variations even at long tim

The disappearance of the memories in the absence
noise occurs only because the range ofc’s collapses at long
times. For fixed, free, or periodic boundary conditio
~which seem most appropriate to physical realizations
balls and springs or of charge-density waves!, at long times
the values ofc0 and cN are the same. To stabilize man
memories permanently, one must arrange things so thac0
ÞcN at long times. The ‘‘phase slip’’ noise studied here
one way to do this. In principle, another way to do this is
impose boundary conditions which enforcec0ÞcN , but we
do not know of a physically plausible way to do this in th
CDW system@19#.

We now discuss possible consequences of our results
experiments on CDW materials. The experiments reporte
Ref. @1# involved averaging over millions of applied pulse
and thus were probably measuring the number of memo
retained in steady state@1#. In the experiment, the only
samples which retained multiple memories had additio
silver paint strips attached between the probe contacts.
perturbation on the system is important, because ordina
one expects the phase slips to occur almost exclusively a
sample contacts, where the strains are largest@13#. The silver
paint in the middle of the sample may induce spatially inh
mogeneous phase slips; our theoretical results suggest
the spatial inhomogeneity of phase slips in a sample may
important in determining the number of memories retained
long times. Further experiments to quantify the spatial
pendence of noise in CDW materials would help determ
whether the theory is applicable to noise production in t
experimental situation.

Because the noise stabilization depends on the deta
spatial characteristics of the noise, it will be quite sam
dependent. On the other hand, in the absence of noise
dependence of the duration of the transient memories
sample size follows from rather general arguments a
should be robust@1#. Therefore, systematic investigation o
the time evolution of the transient memory response
samples with as little noise as possible is therefore proba
the most promising avenue towards making comparison
tween theory and experiment.

In this paper we have shown that it is possible to obtai
rather complete theoretical understanding of our dynam
system in the limit of very weak springs,k→0. However,
real CDW materials such as NbSe3 tend to be described by
the model in the large-k regime@20#. Therefore, quantitative
comparison between this theory and experiment canno
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expected. Understanding how the memory behavior evo
ask is made large and providing quantitative theoretical p
dictions in the regime relevant to experiment is an import
subject for future investigations.
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APPENDIX A: THE k˜0 LIMIT

In Sec. V B we defined thek→0 limit of the model in
terms of averages of the behavior of the model with nonz
k. In this appendix, we demonstrate that this limit is w
defined and show how to construct it without reference to
system with nonzerok. In Appendix A 1 we discuss a singl
integer memory, while in Appendix A 2 we consider briefl
the rather straightforward generalization to the case of m
tiple memories.

1. The k50 limit

We recall that our original model was defined in terms
a discrete-time indext, and wish to introduce a rescaled tim
t̃ 5kt and consider the limitk→0 with t̃ finite. The problem
we are addressing is, given valuescj ( t̃ ) for j 51,2, . . . ,N at
some time t, can the correspondinguj ( t̃ ) be generated
uniquely? If so, then becausedcj /d t̃5uj 11( t̃ )22uj ( t̃ )
1uj 21( t̃ ), the entire time evolution is determined.

As stated, this problem is not solvable in general. This
because, even for a model with nonzerok, the uj are not
defined uniquely at a ‘‘transition’’ at which the sites go fro
one distribution of ‘‘stuck’’ sites or a given cycle structure
another. As an illustration, consider the system

c1~ t11!5c1~ t !2k$u01u222Ffloor@c1~ t !#%, ~A1!

where u050 and u251. If initially c1(0)5117k/2, we
have c1(t)511(722t)k/t, t<4 and c1(t)51
2(21)tk/2, t.4. On the other hand, if initiallyc1(0)51
27k/2, then c1(t)512(722t)k/t, t<4 and c1(t)51
1(21)tk/2, t.4. Therefore, fort<4, the two different ini-
tial conditions yieldu1(0)51 and u1(0)50, respectively.
As k→0, both these situations correspond to the same in
condition c1(0)51, and therefore it is clear that there is
transient period whenu1(0) is not defined uniquely. None
theless, since both initial conditions in the example yie
u1( t̃ )51/2 for t̃ .4k, in the limit k50 it is consistent to
defineu1( t̃ )51/2 for all t̃ .0.

Here we demonstrate thatu1( t̃ ) for t̃ .0 can be defined
uniquely for all possible initial conditions of the model wit
nonzerok that lead to the same initial configuration ofc’s as
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k→0. Specifically, we show that given valuescj ( t̃ 0) for j

51,2, . . . ,N there is a unique consistent way to defineuj ( t̃ )
for t̃ such thatt̃ . t̃ 0, valid up until the next transition. This
fact, together with the observation that the functionscj (t)
are continuous, enables us to show that thek50 limit of our
model is well defined.

For thekÞ0 model, we have thatuj5Ffloor(cj ) unlesscj
is within O(k) of an integerm. If we are close to a transition
we cannot define theuj ’s for all the sites that are close t
integers. However, recall that each transition takes a fi
number of steps, and hence takes up zero units of the
caled timet̃ 5kt ask→0. Thecj ’s change in steps ofO(k),
so the sites wherecj is initially close to an integer will have
a cj that is close to the same integer after the transition. A
the transition, we have one of the following possibilities f
these sites.

~1! The sitej could be stuck~more precisely, the curva
ture of sitej could be stuck! and the value ofcj will execute
a cycle~possibly of period 1! near the integer. In this case
we havem21<uj<m and the site has zero average drift

~2! The site could be drifting up on average. In this ca
cj.m after the transition so thatuj5m.

~3! The sitej could be drifting down on average. In thi
casecj,m after the transition so thatuj5m21.

Since we have that the average drift rate for the sitej after
the transition is given by

dcj

d t̃
5uj 11~ t̃ !22uj~ t̃ !1uj 21~ t̃ !, ~A2!

we have the following consistency conditions:

uj~ t̃ !.m21 implies thatuj 11~ t̃ !22uj~ t̃ !1uj 21~ t̃ !>0,

uj~ t̃ !,m implies thatuj 11~ t̃ !22uj~ t̃ !1uj 21~ t̃ !<0.

These conditions are independent ofk, and we require that
thek50 model satisfy them. In thek50 model, a site can be
stuck only if cj is exactly an integer. Ifcj is not exactly an
integer, then sincecj (t) is continuous, we have

uj~ t̃ 01!5Ffloor@cj~ t̃ 0!#, ~A3!

where t̃ 015 lime→01u( t̃ 01e). If cj ( t̃ 0)5a is exactly an in-
teger, we have that

a21<uj~ t̃ 01!<a.

We can combine the preceding two equations to obtain

u2~cj !<uj<u1~cj !, ~A4!

where u2(x)5 lime→01Ffloor(x2e) and u1(x)
5 lime→01Ffloor(x1e). The functionsu1 and u2 satisfy a
monotonicity condition

u2~a!<u1~a!<u2~b!<u1~b! ~A5!

for all a,b @this follows from the fact thatFfloor(x)
,Ffloor(y) if x,y#. This implies that for any given valueu,
there is at most one value ofc such that it is possible for a
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site with cj5c to haveuj5u. This monotonicity gives the
following consistency requirement on the definition of t
uj ( t̃ 01):

uj~ t̃ 01!.u2
„cj~ t̃ 0!…

implies that uj 11~ t̃ 01!22uj~ t̃ 01!1uj 21~ t̃ 01!>0,
~A6!

uj~ t̃ 01!,u1
„cj~ t̃ 0!…

implies that uj 11~ t̃ 01!22uj~ t̃ 01!1uj 21~ t̃ 01!<0.

For brevity, we will henceforth suppress the time argumen
cj will representcj ( t̃ 0) anduj will representuj ( t̃ 01).

We are trying to generate theuj given thecj so that the
k50 model is well defined. Given thecj , we can take an
initial condition of the formc̃ j5cj1kFj , where theF j is a
given arbitrary bounded sequence, and choosek sufficiently
small so thatc̃ j is not an integer ifcj is not an integer and
uc̃ j2cj u<1/4 for all j. Then theuj obtained by following the
dynamics in a model with finitek starting from this initial
condition and looking at the averages after any initial tran
tions will satisfy the consistency requirements. However
is not clear that this procedure gives a unique definition
uj .

To show that there is only one consistent way to defineuj

for a givencj , we assume the opposite. Letuj
1 anduj

2 be two
distinct definitions foruj that are both consistent. Bothuj

1

and uj
2 satisfy the same boundary conditions, so thatu0

1

2u0
250 anduN

1 2uN
2 50. Sinceu1Þu2, there is some index

j * for which uj*
1

2uj*
2 Þ0. Without loss of generality, we

choose the labels so thatuj*
1

2uj*
2

.0. Sinceu0
12u0

250 and
uN

1 2uN
2 50, there must exist indicesp and q with p, j *

,q such thatup
12up

2<0, uq
12uq

2<0, anduj
12uj

2.0 for all
p, j ,q. By Eq. ~A4!, uj

2>u2(cj ), so thatuj
1.u2(cj ) for

all p, j ,q. Equation ~A6! therefore requires thatuj 11
1

1uj 21
1 22uj

1>0 for all p, j ,q. Equation~A4! also implies
that uj

1<u1(cj ), so thatuj
2,u1(cj ) for all p, j ,q. Equa-

tion ~A6! therefore requires thatuj 11
2 1uj 21

2 22uj
2>0 for all

p, j ,q. Combining these two results, we have

~uj 11
1 2uj 11

2 !1~uj 21
1 2uj 21

2 !22~uj
12uj

2!>0

for all p, j ,q. This implies that ifuj
12uj

2 attains a maxi-
mum on p, j ,q, it is a constant forp< j <q. Therefore,
uj

12uj
2< max(up

12up
2 ,uq

12uq
2)50 for all p, j ,q. This con-

tradicts our assumption thatuj*
1

2uj*
2

.0, and proves tha
there can be only one consistent definition ofuj given cj .
This proves the claim from Sec. V that averaging over
cycles in akÞ0 model gives a consistentk50 model.

Now we present a prescription for generating theuj from
thecj without any reference to thekÞ0 model. The process
consists of identifying all sites whoseu’s must be integers
requiring that all the remainingu’s satisfy uj 1122uj
1uj 2150, and checking to see whether all the constrai
are satisfied. If not, then there is at least one additional
whoseu is an integer, and one such site is identified. T
process is iterated until all the constraints are satisfied.
s;

i-
it
f

e

s
te
s

First consider the situation whereu05up50. We are
given a sequencecj (0, j ,p) and hence functionsui

1(c)
and ui

2(c) that satisfy the monotonicity condition~A5! for
each 0, i ,p. The dynamics of thecj are determined by Eq
~A2!, and eachuj must satisfy the constraintuj

2(cj )<uj

<uj
1(cj ). Our earlier results generalize to this case and

follows that there is a unique assignment of theuj that sat-
isfy the consistency conditions in Eq.~A6!. In this situation
we have the following result.

Claim 1: Let j * be an index whereuj
2(cj ) attains a maxi-

mum for 0, j ,p and uj*
2 (cj* ).0. Then we must have

uj* 5uj*
2 (cj* ).

Proof: Assume that this is not true. Then, we must ha
uj* .uj*

2 (cj* ), and the consistency condition requires th
uj* 111uj* 2122uj* >0. It follows that uj* is not a strict
maximum for uj for 0< j <p. Let 0,m,p be such that
um>uj* . Since the maximum value foruj

2(cj ) was attained
at j 5 j * , it follows thatum.um

2(cm). Therefore, by the pre-
ceding argument withm in the place ofj * , it follows thatum
is not a strict maximum for uj . Consequently, uj
< max(u0,up)50 for all 0, j ,p. This contradicts the fac
that theuj are constrained to be greater than or equal
uj

2(cj ) anduj*
2 (cj* ).0.

A similar argument shows that ifj * is an index where
uj

1(cj ) attains a minimum for 0, j ,p and uj*
1 (cj* ),0,

thenuj* 5uj*
1 (cj* ).

If uj
2(cj )<0 anduj

1(cj )>0 for all 0, j ,p, the preced-
ing result does not give us any information. However, in t
case we can setuj50 for 0< j <p. Since this assignmen
satisfies the constraint and the consistency conditions, by
earlier result, it is the unique consistent definition foruj .

Now we can solve the problem of assigning theuj given
thecj for thek50 model recursively. Assume that we kno
up5a anduq5b with p.q @26#. Let

l i5a
q2 i

q2p
1b

i 2p

q2p
.

For p, i ,q defineũi
6(c)5ui

6(c)2 l i andũi5ui2 l i . Since
l j 111 l j 2122l j50, it follows that we are precisely in the
situation that we considered above.

We set uj5 l j for all p, j ,q and check to see if
ũ j

2(cj )<0 andũ j
1(cj )>0 for all p, j ,q. If not, we find an

index j * and fix uj* as in Claim 1 above, and repeat th
procedure forp, j , j * and j * , j ,q. This determines all
the uj recursively in no more thanN steps.

The uj determine the time dependence of thec’s via
dcj /d t̃5uj 1122uj1uj 21. The complete solution betwee
the transitions att̃ 5 t̃ n and t̃ 5 t̃ n11 is given by

cj~ t̃ !5cj~ t̃ n!1r j~ t̃ 2 t̃ n! for t̃ n< t̃< t̃ n11 . ~A7!

2. Multiple memories

Now we extend our analysis of thek→0 limit to the case
of multiple memories. We find
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dcj

d t̃
5U j 1122U j1U j 21 , ~A8!

with the U j given by

U j5
1

pj
(
t50

pj 21

Ffloor@cj~ t01t !2A~ t01t !# ~A9!

if the site j is stuck in a cycle of periodpj , and

U j5
1

M (
t50

M21

Ffloor@cj~ t01t !2A~ t01t !# ~A10!

if the site j is drifting, i.e., the fractional part ofcj is not
equal to the fractional parts of any of the forcin
A(1),A(2), . . . ,A(M ). We define

U25 lim
e→01

1

M (
m50

M21

Ffloor@cj2e2A~m!# ~A11!

and

U15 lim
e→01

1

M (
m50

M21

Ffloor@cj1e2A~m!#. ~A12!

Then we can assign the stuck sites and the drifting s
by the same procedure as for the single memory except
we replaceu2 by U2 andu1 by U1.

APPENDIX B: THE LINEARIZED MAP

In this appendix, we address the large-scale dynamic
the system by examining a linearized equation obtained
approximating theFfloor function in Eq. ~3! with z21/2,
yielding the linearized map:

cj~ t11!2cj~ t !5k@cj 11~ t !22cj~ t !1cj 21~ t !#. ~B1!

Although this linearized map contains no information abo
the memory formation, it captures accurately the behavio
the system at large scales. Reference@1# presented numerica
evidence for this observation, and showed that it enables
to obtain analytic estimates on the dependence of
memory formation and forgetting processes on system
and model parameters.

This appendix has two subsections. In the first, we pres
an analytic bound on the difference between the configu
tions generated by the linear and nonlinear equations sta
from the same initial conditions. This bound on the diffe
ence grows logarithmically with system size, which is ve
slowly indeed. Therefore, although the memories are ab
in the linearized equation@indeed, theA(t) drop out en-
tirely#, the linearized equation yields a very accurate desc
tion of the system’s behavior on large scales.

The second subsection discusses the effect of the nois
the linearized map. We demonstrate that the difference
tween the configurations yielded by the nonlinear and
linear equations differs by no more than an amount of un
s
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1. Analytic bounds on behavior on large scales
for the map without noise

In this subsection we present an analytic bound on
error in the curvatures that is made when one approxim
the full nonlinear Eq.~3! with the linearized version Eq
~B1!. As discussed in Ref.@1#, numerically we observe tha
the error in the curvatures made by approximating the n
linear equation with the linearized one is of order unity f
all system sizes, boundary conditions, and initial conditio
The analytic bound presented here, valid for thek→0 limit
of the model, demonstrates that the difference between
configurations of the two equations is bounded by an amo
independent of time and which increases only logarithm
cally with the size of the system. This result provides furth
evidence that the long wavelength behavior of the nonlin
equations~though not the memory formation itself! can be
estimated accurately using the linearized equations.

We proceed by writing the equation of motion for th
nonlinear system, Eq.~3!, in the limit k50 as

dcj~ t !

dt
5cj 11~ t !22cj~ t !1cj 21~ t !

2@d j 11~ t !22d j~ t !1d j 21~ t !#, ~B2!

whered j (t)[Q frac
„cj2A(t)…21/2. The definition ofQ frac,

the fractional part function, implies that21/2<d j (t),1/2
for all j andt. For brevity, here we drop the tilde and uset to
denote a continuous-time variable. We compare the solu
to Eq. ~B2! to that of the~linear! equation whered j (t)50
for all j and t, starting from the same initial conditions. W
denote the solution to the nonlinear equationcj (t) and the
solution to the linearized equation asl j (t).

We define

Aq~ t !5
1

AN
(

j
eiq jcj~ t !, ~B3!

Bq~ t !5
1

AN
(

j
eiq jd j~ t !, ~B4!

and Fourier transform Eq.~B2!, obtaining

dAq~ t !

dt
52vq@Aq~ t !2Bq~ t !#, ~B5!

with vq[2(12cosq). This equation has the solution@21#

Aq~ t !5e2vqtAq~ t50!1vqe2vqtE
0

t

dt8evqt8Bq~ t8!.

~B6!

Note that the first term on the right hand side of Eq.~B6! is
just l j (t), the solution to linearized equation withd50.
Therefore, if we define the deviations from the lineariz
solutions

Dcj~ t !5cj~ t !2 l j~ t ! ~B7!

and
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DAq~ t !5Aq~ t !2
1

AN
(

j
eiq j l j~ t !, ~B8!

then

DAq~ t !5vqe2vqtE
0

t

dt8evqt8Bq~ t8!. ~B9!

Fourier transforming, we obtain

Dcj~ t !5
1

N (
j 8

(
q

eiq~ j 82 j !vqe2vqtE
0

t

dt8evqt8d j 8~ t8!

~B10!

5(
j 8

E
0

t

dt8d j 8~ t8!
d

dt8
Gj 2 j 8~ t2t8!, ~B11!

where

Gj 2 j 8~ t2t8!5
1

N (
q

eiq~ j 82 j !evq~ t82t ! ~B12!

is the Green function specifying the response at sitej and
time t to a disturbance at sitej 8 and timet8 @22,23#.

To proceed further, we investigate the Green function,
~B12!. Up to now our manipulations have been exact for a
length chain, but now we specialize to the case of lo
chains, for which the sum overq can be replaced by a
integral, yielding~Ref. @24#, 9.6.19!

Gj 2 j 8~t!5I j 82 j~2t!e22t, ~B13!

whereI n(x) is the modified Bessel function of the first kin
of ordern. If j 85 j , thenGj 2 j 8(t) monotonically decrease
from 1 to 0 ast goes from 0 tò , while for j 8Þ j , Gj 2 j 8(t)
has a single maximum as a function oft; it rises from zero to
a maximum value and then decreases back to zero at lart.
At large distances and long times, the contribution of la
q’s is suppressed exponentially, so that it is very accurat
approximatevq with its small-q limit, vq'q2, yielding the
Green function@25#:

Gj 2 j 8~ t2t8!>
1

A4p~ t2t8!
expF2

~ j 82 j !2

4~ t2t8!
G . ~B14!

This function has its maximum when (t2t8)5 j 2/2, with the
valueGj 82 j

* 5(A2peu j 2 j 8u)21.
The simple behavior of theG’s, together with the bounds

21/2<d j 8(t8),1/2 for all j 8 and t8, can be used to boun
uDcj u. The absolute value of the right hand side of Eq.~B11!
is maximized ifd51/2 whenever the time derivative ofG is
positive, andd521/2 whenever the time derivative ofG is
negative. Thus, one obtains the bound for long chains:

uDcj~ t !u<11 (
j 8Þ j

Gj 82 j
*

'11 (
j 8Þ j

~A2peu j 2 j 8u!21} ln~N!, ~B15!
.
y
g

e
to

where, again,N is the length of the chain. In more dimen
sions, a similar calculation yields the result that the bou
grows logarithmically with the linear dimension of the sy
tem. Thus, the linearized map deviates from the exact s
tion by an amount that is bounded at all times by an amo
that grows very slowly with system size. The deviations o
served numerically are smaller than this bound; this is
surprising because the bound is obtained for a partic
choice of correlatedd ’s, which is unlikely to be generated b
the dynamics.

2. Linearized map with noise

A bit more insight into the linearized equation can
obtained by investigating the long-time behavior of the l
earized map with noise added for the ‘‘nailed’’ bounda
condition. We show that the difference between the cur
ture values in the linearized solution and the nonlinear so
tion is bounded above by an amount of order unity.

We start with Eq.~13! together with Eq.~11!, yielding

1

Tave
(
t5t0

t01Tave21

Ffloor@cj~ t !2A~ t !#52
X

t (
n51

j

Pn .

~B16!

We linearize this equation by replacingFfloor(z)→z2 1
2 and

obtain

cj
linear5

2X

t (
n51

j

Pn1Ā1
1

2
. ~B17!

We can compare this result with that for the nonline
equations. To do this, we can use the boundC j

,cj
nonlinear(t)<Cj11 @recall cj (t)5C1dcj (t), with 0

,dcj (t)<1#, and cast Eq.~20! as the inequality

cj
nonlinear~ t !<2

X

t (
n51

j

Pn1
1

M (
m51

M

Ffloor@Am#11

,cj
nonlinear~ t !11. ~B18!

Using the inequalitiesx21,Ffloor@x#<x, we find

cj
nonlinear~ t !,cj

linear1
1

2
,

cj
nonlinear~ t !.cj

linear2
3

2
. ~B19!

The difference betweencj
linear and cj

nonlinear is thus bounded
by an amount of order unity even as the system sizeN→`.
Thus, though once again the linearized model does not y
information about the memory values exhibited by the s
tem, it does provide an accurate description of the large-s
variations of the configuration.
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